ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Scientists discover 83 Quasars from the early universe

Talk about a massive find!

Jordan StricklerbyJordan Strickler
March 14, 2019
in Astronomy, Astrophysics, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Stars at Milky Way’s heart might be ‘immortal’, drawing energy from dark matter
Astronomers stumble upon largest explosion in the universe thus far
Massive Black Hole Could Challenge Stellar Evolution Theories
For the first time ever, we’ve seen a black hole being silently born — no supernova required

Turns out black holes at the dawn of the universe weren’t that uncommon after all.

Artistic depiction of quasars. Image credits: NASA / JPL.

Researchers from Princeton, Japan, and Taiwan have found 83 quasars powered by supermassive black holes that were formed when the universe was less than 0.7 billion years old — less than 5% of its current age. This increases the number of black holes known at that epoch considerably and reveals how common they really were early in the history of our universe.

“The quasars we discovered will be an interesting subject for further follow-up observations with current and future facilities,” said Yoshiki Matsuoka of Ehime University in Japan, who led the study. “We will also learn about the formation and early evolution of supermassive black holes, by comparing the measured number density and luminosity distribution with predictions from theoretical models.”

The Subaru Telescope of the National Astronomical Observatory of Japan in Hawaii spotted the quasars up to 13.05 billion light-years away with an average spacing between each at a billion light-years. Three telescopes were involved in the project – the Subaru, the Gemini South Telescope in Chile, and the Gran Telescopio Canarias on La Palma in the Canary Islands, Spain. The discovery appeared in a series of five papers published in The Astrophysical Journal and the Publications of the Astronomical Observatory of Japan.

Black holes are regions of spacetime which have an extreme amount of matter packed into a tiny area — think of a star 10 times more massive than the sun pressed into a sphere the size of New York City. This results in a gravitational field so strong that not even light or presidential tweets can escape (although it has been hypothesized that something called “Hawking radiation” can).

The recently discovered black holes can be millions or even billions of times more massive than the sun. A supermassive black hole becomes visible when gas accretes into it. This causes it to shine as a “quasar.” Researchers have estimated the black holes to be around 13 billion years old. By comparison, the Big Bang is said to have happened 13.3 billion years ago, with Earth being a spritely 4.5 billion years in age.

Researchers on the project utilized data taken with a cutting-edge instrument called a “Hyper Suprime-Cam” (HSC), mounted on the Subaru Telescope. HSC has a gigantic field-of-view — 1.77 degrees across, or seven times the area of the full moon. The HSC team selected quasar candidates using the data to carry out an intensive observational campaign to obtain the spectra of the candidates using the three telescopes. Using 17 already-known quasars in the survey region, the researchers were able to find roughly one supermassive black hole per cubic giga-light-year.

“It is remarkable that such massive dense objects were able to form so soon after the Big Bang,” said Michael Strauss, a professor of astrophysical sciences at Princeton University who is one of the co-authors of the study. “Understanding how black holes can form in the early universe, and just how common they are, is a challenge for our cosmological models.”

Tags: black holequasar

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

News

We Could One Day Power a Galactic Civilization with Spinning Black Holes

byTibi Puiu
4 weeks ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
2 months ago
News

What would happen if a (small) black hole passed through your body?

byMihai Andrei
3 months ago
This artist’s illustration shows the largest radio jet ever found in the early Universe. The jet was first identified using the international Low Frequency Array (LOFAR) Telescope, a network of radio telescopes throughout Europe. Follow-up observations in the near-infrared with the Gemini Near-Infrared Spectrograph (GNIRS), and in the optical with the Hobby Eberly Telescope, were obtained to paint a complete picture of the radio jet and the quasar producing it. GNIRS is mounted on the Gemini North telescope, one half of the International Gemini Observatory, funded in part by the U.S. National Science Foundation and operated by NSF NOIRLab. Historically, such large radio jets have remained elusive in the distant Universe. With these observations, astronomers have valuable new insights into when the first jets formed in the Universe and how they impacted the evolution of galaxies.
Science

Astronomers Discover Largest Radio Jet from the Early Universe. It’s Twice the Width of the Milky Way!

byTibi Puiu
3 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.