Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

The Jesusbot: robot strides on the surface and jumps on water

Taking inspiration from nature, scientists in South Korea hijacked millions of years of evolution and devised their very own robotic version of a water-strider - insects that can jump on water. Their tiny droid mimics the water-strider in both its water balancing acts and jumping on water, which is a lot harder than it sounds.

Tibi Puiu by Tibi Puiu
July 31, 2015
in News, Robotics

Taking inspiration from nature, scientists in South Korea hijacked millions of years of evolution and devised their very own robotic version of a water-strider – insects that can jump on water. Their tiny droid mimics the water-strider in both its water balancing acts and jumping on water, which is a lot harder than it sounds.

robot strider
GIF courtesy of Seoul National University in South Korea

Je-Sung Koh, at Seoul National University in South Korea, and colleagues first used high speed cameras to carefully study the gait and motion of water-striders on water. Koh found that the insects have a specialized feet coated with a hydrophobic substance that helps them float on the surface of the water without actually sinking in it one bit. As far as jumping on water is concerned, though, the insects employ a physical mechanism, carefully coordinating its legs to steadily build momentum for the leap all while never breaking surface tension.

Surface tension is a phenomenon in which the surface of a liquid, where the liquid is in contact with gas, acts like a thin elastic sheet. This term is typically used only when the liquid surface is in contact with gas (such as the air). Water has one of the most strongest surface tension since water molecules are linked with one another by a hydrogen bond. Besides the hydrophobic coating, the surface of a water strider’s legs  distribute its weight, causing the surface of the liquid to become depressed, minimizing the potential energy to create a balance of forces so that the strider can move across the surface of the water without breaking through the surface. This is similar in concept to wearing snow shoes to walk across deep snowdrifts without your feet sinking.

The tiny bot developed at Seoul weighs only  68 milligrams and measures 160 mm in length. Its four legs are coated with a superhydrophobic material and are held together with  a tiny body and a spring. When a zap of heat hits the bot, the heat-reactant spring releases causing the curved legs to move inward. Then it accelerates with 14g to  jump to the height of 14 cm.

“Normally, jumping requires a large force to be applied to the surface that you are jumping on,” the researchers say. “[But when jumping] on water, legs will easily penetrate the water, and even if you can jump on water, the jumping height will [usually] be lower than jumping on ground. However, our small robot can jump on water without breaking the water surface, and can jump on water as high as jumping on land.”

The strider-bot isn’t quite perfect though. Unlike the real water strider, the robot sinks in the water after it lands from its jump. But it’s definitely a interesting demonstration. It’s small leaps such as these that will eventually make robots feel at home on any terrain, be it in landfills, Mars’ rugged terrain or on water.

via Popular Mechanics

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Robot see, robot do: MIT software allows you to instruct a robot without having to code
  2. For the first time, physicists measure electron as it jumps from semiconductor. Yes, it’s a big deal!
  3. MRSA originated in humans — but it frequently jumps to other animals and bounces back to us
  4. Frogs’ huge jumps come from spring-like legs
  5. Avian flu jumps from birds to mammals, killing New England baby seals
Tags: stridersurface tension

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW