ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Charge nano-map could help scientists turn perovskite into THE solar cell material

Despite solar cells made with perovskite recently crossed the 20 percent efficiency mark, researchers say there's still room to improve if only they knew how charge flows at the nanometer scale. They just had to ask.

Tibi PuiubyTibi Puiu
March 17, 2016
in News, Physics, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

A crystal known to science for more than a century was only recently recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially over time, making it a potential candidate for revamping the solar industry in favor of silicon.  Despite solar cells made with perovskite recently crossed the 20 percent efficiency mark, researchers say there’s still room to improve if only they knew how charge flows at the nanometer scale. They just had to ask, and the  Department of Energy’s Oak Ridge National Laboratory delivered.

Why you should care about perovskite

1 cm2 monolithic perovskite-silicon tandem solar cell. This image was used for illustrative purposes, and the pictured solar cell was not involved in the present research. Credit: Rongrong Cheacharoen/Stanford University
1 cm2 monolithic perovskite-silicon tandem solar cell. This image was used for illustrative purposes, and the pictured solar cell was not involved in the present research. Credit: Rongrong Cheacharoen/Stanford University

The perovskite mineral was originally found in the Ural Mountains in 1839, but it was only a few years ago that its ability to transport solar energy and convert it into electricity was discovered. Just a couple of years later, rated efficiency in the lab has soared from 3.8% to 19.3%, a pace of improvement unmatched by any other solar technology. Currently, the leading commercial solar tech employs crystalline silicon solar cells, which convert roughly 25% of incoming photon energy into electricity, but have decades worth of research backing them.

What makes this mineral so exciting  is its uncanny ability  to diffuse photons a long distance through the cell when prepared in a liquid solution. Typically, solar cells convert energy to electricity by exploiting the hole-pair phenomenon. The photon hits the semiconducting material, then if its energy falls into the semiconductor bandcamp, an electron is offset, leaving a gap in the atom or hole. The electron travels from atom to atom within the material, occupying holes and offsetting at the same time until it eventually reaches an electrode and has its charge transferred to a circuit. Last step: profit and generate electricity.

The key is to have electron moving for as long as possible, and thanks to its diffusing capabilities, perovskite can theoretically generate more electricity. Perovskite is also dirt cheap which is highly important if we’re ever to cover a significant portion of the planet’s surface with solar cells for a 100% sustainable energy future.

Zooming in on charges

(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions. Credit: ORNL
(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions. Credit: ORNL

An experimental setup combined microscopy and ultra-short laser pulses that fire every 50 millionths of a billionth of a second. These pulses mimicked the sun’s rays by providing photons that got absorbed by a perovskite solar cell. A second laser measured minute changes in light absorption in the material. Eventually, the researchers drew a pixel-by-pixel map of the material.

“The ability to identify what will be created after the solar cell absorbs a photon, either a pair of free charges or their bound form called an exciton, is crucial from both fundamental and applied perspectives,” said co-author Yingzhong Ma, who led the research team. “We found that both free charges and excitons are present, and the strength of our approach lies in not only identifying where they are but also determining what their relative contributions are when they are both present at a given spatial location.”

“With conventional approaches of studying photovoltaic materials, we are unable to accurately map out electronic processes and how electrons are getting lost,” said  said Benjamin Doughty, one of the authors and a member of ORNL’s Chemical Sciences Division. “Those processes can translate into losses in efficiency.”

Now, it only remains to identify what causes this spatial difference, Ma says. If and when this happens, they might also learn what causes the degradation issues due to moisture many have reported.

Reference: “Separation of Distinct Photoexcitation Species in Femtosecond Transient Absorption Microscopy,”http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00638.

RelatedPosts

Solar cells etched with Blu-ray bit patterns absorb 21.8% more energy
Nanowires break solar cell cell theoretical maximum efficiency and usher in a new era of solar power
Solar paint promises to turn any surface into a solar cell
Finally, a fully transparent solar energy harvester

 

Tags: perovskitesolar cell

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
2 weeks ago
News

Major Breakthrough in Perovskite Solar Cells Paves the Way for More Affordable Solar Power

byTibi Puiu
12 months ago
Solar Hopper, the solar-powered quadcopter.
Electronics

Drone with solar cells flies on sunshine

byRupendra Brahambhatt
1 year ago
Green Living

Why transparent solar cells could replace windows in the near future

byRupendra Brahambhatt
2 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.