ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Moth wings pave the way toward a less-noisy future by inspiring ultra-thin sound absorbers

Sometimes, copying nature can help us find amazing design ideas.

Alexandru MicubyAlexandru Micu
June 15, 2022
in Biology, Materials, News, Physics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Moth wings could point the way towards lightweight, more efficient sound absorbers.

Close-up of a moth wing scale. Image credits University of Bristol.

Researchers at the University of Bristol have found that the scales on moth wings can be a surprising source of silence for us all. These structures act as excellent sound dampeners and absorbers even when placed on artificial surfaces. This property is owed to the dampening effect that moth wings have evolved in order to keep the insects safe from their arch-nemesis: bats.

Cashing in on an arms race

“What is even more impressive is that the wings are doing this whilst being incredibly thin, with the scale layer being only 1/50th of the thickness of the wavelength of the sound that they are absorbing,” explained lead author Dr. Thomas Neil. “This extraordinary performance qualifies the moth wing as a naturally occurring acoustic absorbing metasurface, a material that has unique properties and capabilities, that are not possible to create using conventional materials.”

You might not be able to tell, judging by how many of these flying critters pop up every summer, but moths are actually experiencing heavy predatory pressures from bats around the world. In fact, they have been experiencing this for some 65 million years and, during all that time, they have picked up a few tricks.

One of these was only recently discovered by researchers: the fact that moth wings act as sound absorbers. Such a property gives the insects a measure of protection from bats, which use echolocation calls to find prey. The sound-dampening quality of these wings is produced by specialized scales that line them.

Now, the same team of researchers at the University of Bristol report that these wings can act as excellent sound absorbers even when placed upon artificial surfaces. The results point the way toward novel metamaterials that can act as much more efficient sound-absorbing panels compared to today’s options.

“What we needed to know first, was how well these moth scales would perform if they were in front of an acoustically highly reflective surface, such as a wall,” says Prof. Marc Holderied of Bristol’s School of Biological Sciences, corresponding author of the study. “We also needed to find out how the mechanisms of absorption might change when the scales were interacting with this surface.”

The researchers tested these properties by placing sections of moth wing on an aluminium disk and then testing their effect on sound waves hitting them at different orientations. They also examined how the wings’ ability to absorb sound was affected by the removal of scale layers.

They report that moth wings could absorb as much as 87% of incoming sound energy even when placed on a solid substrate, with this effect constant across a wide range of frequencies and directions for the incoming sound. This is a very good indication that the structures which make up the wings of moths can show us how to build high-efficiency, ultrathin sound-absorbing panels. As cities get louder, the team explains, there is a growing need for such high-performance sound mitigation elements. They also have great potential in the travel industry, where they can help increase efficiencies and reduce CO2 emissions by reducing weight.

RelatedPosts

Snapping worms make one of the loudest noises in the ocean
Paper-thin device turns touch into electricity, flags into loudspeakers, bracelets into microphones
Ultra slim sound diffuser could greatly improve your cinema and theater experience
Making walls talk – new technique extracts audio from video

Going forward, the team plans to replicate the sound-absorbing properties of these wings in a prototype metamaterial and tweak it so that it interacts most with sounds at frequencies that our ears perceive. Currently, the moth wing scales interact with sounds at the ultrasound frequency range, which is above what the human ear can pick up on.

“Moths are going to inspire the next generation of sound absorbing materials,” Prof. Holderied concludes. “One day it will be possible to adorn the walls of your house with ultrathin sound absorbing wallpaper, using a design that copies the mechanisms that gives moths stealth acoustic camouflage.”

The paper “Moth wings as sound absorber metasurface” has been published in the journal Proceedings of the Royal Society A: Mathematical and Physical Sciences.

Tags: moth wingsmothssound

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

This Moth’s Wings Create a Mind-Bending 3D Optical Illusion to Avoid Being Eaten

byTibi Puiu
3 months ago
Science

Aztec Death Whistle Was Designed to Haunt the Mind, Brain Scans Confirm

byTibi Puiu
6 months ago
News

Scientists found a way to make sound travel in only one direction

byTibi Puiu
7 months ago
Mind & Brain

You can literally hear the sound of silence, surprising study says

byTibi Puiu
11 months ago

A Former Intelligence Officer Claimed This Photo Showed a Flying Saucer. Then Reddit Users Found It on Google Earth

May 3, 2025

This Flying Squirrel Drone Can Brake in Midair and Outsmart Obstacles

May 2, 2025 - Updated on May 3, 2025

Oldest Firearm in the US, A 500-Year-Old Cannon Unearthed in Arizona, Reveals Native Victory Over Conquistadores

May 2, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.