Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Physics

Physicists create artificial magnetic monopoles

Mihai Andrei by Mihai Andrei
June 4, 2013
in Physics

A team of researchers from Cologne, Munich and Dresden have managed to create artificial magnetic monopoles, similar in many ways to a fundamental particle postulated by Paul Dirac in 1931.

Monopoles and Dipoles

magnetic dipole
Source

Until now, a magnetic monopole, the magnetic analogue to an electric charge has never been observed – all we had until now were dipoles: magnetic bodies which have two poles, noted as North and South. Basically, a dipole is a pair of electric charges or magnetic poles, of equal magnitude but of opposite sign or polarity, separated by a small distance. A monopole, as you probably guessed by now – is just a single pole.

A magnetic monopole is a hypothetical particle in particle physics that is an isolated magnet with only one magnetic pole. The interest with monopole particles stems mostly from particle theories (like superstring theory, for example), but in recent times, there’s been industrial interest too, as several companies are interested in using magnetic whirls in the production of computer components.

Creating a monopole

Credit: Ch. Schütte/University of Cologne
Credit: Ch. Schütte/University of Cologne

To do this, researchers merged tiny magnetic whirls, so-called skyrmions – hypothetical particles which have been described, but not conclussively proven. At the point of merging, the physicists were able to create a monopole, which has similar characteristics to a fundamental particle postulated by Paul Dirac in 1931 to explain why electrons and protons carry particles of the exact same value.

The thing is, since this doesn’t have two poles, it doesn’t create a magnetic field per se, but even so, it is possible to measure them experimentally in the same manner as normal magnet fields: by the measure in which they deflect electrons.

“It is fascinating that something as fundamental as a magnetic monopole can be realized in a piece of material,” describes Stefan Buhrandt. Despite this, artificial monopoles cannot solve Dirac’s problem: only electrons in solid state, but not protons, feel the artificial magnet fields.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Physicists Measure Magnetic Moment of a Single Antimatter Particle
  2. Physicists create negative temperature state – thermodynamic laws still stand
  3. Physicists create a new form of light by binding photons
  4. Inspired by a Japanese basket, physicists create new metal with peculiar properties
  5. Physicists may have found a way to create traversable wormholes
Tags: dipolemagneticmagnetic dipolemagnetic monopole

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW