ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists take snapshots that show how water conducts electricity

Finally, someone found out how charge is transferred between water molecules.

Tibi PuiubyTibi Puiu
December 5, 2016
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

The first water map on the moon shines hope for human colony
New process can make hydrogen fuel out of seawater without destroying the devices
The Leidenfrost effect and a cool water maze
California issued rights for five times the water it actually has
newton cradle
When charge is transferred through water, the oxygen atoms barely move at all. Instead, only the end atoms move while the charge is transferred in between, similar to how Newton’s cradle works. Credit: Pixabay

Water, in its pure form, is one of the worst electrical conductors out there. It makes up for it, however, by being a great ionic solvent and it is these dissolved ions, like salts and metals, that conduct electricity well. But despite its crucial importance in biology and chemistry mechanisms, the way water conducts electricity has never been truly understood at a molecular level. Well that’s not the case anymore after a team led by Yale chemistry professor Mark Johnson has finally cracked the case.

The researchers used novel tools and techniques to trace the structural changes that occur in the murky web of interconnected water molecules as one extra proton gets transferred from one oxygen atom to the next. In order to study this proton relay race, scientists had previously relied on infrared colour changes but results end up looking like a blurred photograph — useful, but not very revealing.

In 1806, Chemist Theodor Grotthuss first described how charge moves in water suggesting protons pass from molecule to molecule by hopping from oxygen atom to oxygen atom. We now know this process as the Grotthuss mechanism — we haven’t learned an awful lot more in the past two centuries, though.

The approach Johnson and colleagues used involved fast-freezing the chemical process, resulting in snapshots of the proton movements akin to still frames from a movie. To make the snapshots as clear as possible, charge was transferred between only a couple of ‘heavy water’ molecules —  water made of the deuterium isotope of hydrogen. The molecules were chilled close to absolute zero then studied with spectroscopy.

“The oxygen atoms don’t need to move much at all,” Johnson said. “It is kind of like Newton’s cradle, the child’s toy with a line of steel balls, each one suspended by a string. If you lift one ball so that it strikes the line, only the end ball moves away, leaving the others unperturbed.”

Armed with this knowledge, it’s possible to optimize applications ranging from alternative energy technologies to the development of pharmaceuticals. Concerning fundamental research, the new findings could help us understand the chemical processes that take place at the surface of water. The same method could, for instance, tell us if the water’s surface is more or less acidic than the bulk of water. Right now, there’s no way to measure the surface pH of water.

“In essence, we uncovered a kind of Rosetta Stone that reveals the structural information encoded in color,” Johnson said. “We were able to reveal a sequence of concerted deformations, like the frames of a movie.”

Journal Reference: C. T. Wolke, J. A. Fournier, L. C. Dzugan, M. R. Fagiani, T. T. Odbadrakh, H. Knorke, K. D. Jordan, A. B. McCoy, K. R. Asmis, M. A. Johnson. Spectroscopic snapshots of the proton-transfer mechanism in water. Science, 2016; 354 (6316): 1131 DOI: 10.1126/science.aaf8425

Tags: water

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
6 days ago
Environment

Mexico Will Give U.S. More Water to Avert More Tariffs

byKimberly M. S. Cartier
3 weeks ago
Geology

Exoplanets may have more water than we thought — but there’s a catch

byMihai Andrei
9 months ago
Geology

Mars may have a lot of water in its crust. It’s just too deep to use

byMihai Andreiand1 others
9 months ago

Recent news

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

May 22, 2025
default

From Farms to Lost Cities, Drones Are Quietly Revolutionizing Modern Science

May 22, 2025

Professional Bodybuilders Are Five Times More Likely to Die Suddenly Than Amateurs. Yes, it’s Because of the Drugs

May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.