Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Science News

Researchers devise first electric circuit with a magnetic insulator, which was thought to be impossible

A team of Dutch and Belgian researchers demonstrated an electric circuit coupled with a magnetic insulator. The circuit uses so-called 'spin waves' instead of electrons to transmit information, something that was considered unpractical until not too long ago. The findings could help lead to a new class of electronics which are far more efficient since there's less heat loss.

Tibi Puiu by Tibi Puiu
September 16, 2015
in News, Physics

A team of Dutch and Belgian researchers demonstrated an electric circuit coupled with a magnetic insulator. The circuit uses so-called ‘spin waves’ instead of electrons to transmit information, something that was considered unpractical until not too long ago. The findings could help lead to a new class of electronics which are far more efficient since there’s less heat loss.

Spin is a fundamental property of electrons that describe their magnetic moment. It’s more of an analogy, however, since electrons don’t really spin, not like a ball or planet at least. Instead, these angular momenta are discrete, quantized in units of Planck’s constant divided by 4 pi. When an electron with a spin opposite relative to the magnetization enters a field, it causes a perturbation in the magnetic material called a spin wave.

The collaborative effort between University of Groningen, Utrecht University, the Université de Bretagne Occidentale and the FOM Foundation showed for the first time that it is possible to transmit electric signals in an insulating material. This breakthrough was achieved by introducing spin waves in an electric circuit by carefully tweaking the circuit’s geometry.

The two thin vertical lines you can see in this picture are 100 µm long, 300 nm wide and 10 nm thick. Wider connections are titanium/gold leads where current is inserted and voltage is measured. Image: Cornelissen, et al
The two thin vertical lines you can see in this picture are 100 µm long, 300 nm wide and 10 nm thick. Wider connections are titanium/gold leads where current is inserted and voltage is measured. Image: Cornelissen, et al

 

Previously, such a circuit was deemed impossible since you couldn’t introduce a perturbation important enough to generate a spin wave. The researchers were creative, however, and exploited the  spin waves that are already present in the material due to thermal fluctuations. Specifically, they made a  200 nanometre thin layer of yttrium iron garnet (a mineral and magnetic insulator, YIG in short), with a conducting platinum strip on top of that on both sides. While charged electrons could travel along the platinum layer, they were blocked by the insulator. However, at the interference between the two electron collisions transferred their spin to the YIG magnetic insulator. Ultimately, this generates a spin wave in the YIG, scientists report in Nature Physics.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

What’s interesting is that when the spin is transferred – effectively when the spin wave is generated – heat is also transferred across the whole interference. This means you can heat or cool, depending on the direction of magnetization, the whole circuit. Integrated circuits based on spin waves or a combination of both spin waves and electrons could thus be a lot more efficient.

Tags: electronspinspin waveUniversity of GroningenUtrecht University
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.