ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Fun mathematics of domino chain reactions: could a tiny domino end up to topple a skyscraper-sized one? Yes

Tibi PuiubyTibi Puiu
January 10, 2013
in Physics, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

domino-magnification Besides being a great family time activity and an awesome display of art for some who have way too much time on their hands, dominos are also a great mathematics exercise. Although most dominos are the same size, it’s well documented that the first domino piece can topple a second larger domino piece, which in term can topple a greater than the second third domino piece and so on in a chain reaction. An interesting physics and mathematics question pop-up: how big can the succeeding domino piece be in order for this to work? J M J van Leeuwen from Leiden University in The Netherland took up the challenge and developed a mathematical model to answer this question.

At first glance the problem might seem a trifle, but finding the maximum growth factor in the domino chain reaction ins’t quite a walk in the park. In this fantastic video below you can see how a tiny domino piece only a few millimeters tall ultimately topples over a roughly one meter high domino, all through a step by step x1.5 incremental increase in size of the pieces and space between them.



How so? The secret lies in energy. When a domino piece is stationary it has a certain potential energy. The energy required to topple a domino is smaller than its potential energy which gets released when it falls. This difference in energy causes a force amplification that can be used to ultimately topple larger dominos.

If Leeuwen were to base his calculations on real world dynamics, he would’ve ended up with some impossible to compute equations – not with his resources at least. So a set of mathematical simplification were made – the friction between the ground and the dominoes is effectively infinite so that they cannot slide;  the collisions are fully inelastic so the dominoes stay in contact with each other when they collide; once in contact with each other, the dominoes slide frictionlessly over each other.

That might not be close to reality, but it’s good enough to actually get scientific answer. Thus, with these assumptions in mind and an optimal spacing between each domino, Leeuwen found that for a chain reaction to be successful  each succeeding domino can be no more than about twice as big as the previous one – a growth factor of two. In the video, its producers used a x1.5 factor, apparently this could have been greater. Even Leeuwen admits, however, that a growth factor of 2 is highly unrealistic and might never hold in practice since his assumptions will never be valid in real life.

RelatedPosts

Solar Power Today and Tomorrow
Mashed potatoes are an ideal fuel for exercising, new study reports
Researchers map out energy consumption for every building in Boston
Letter signed by 154 Australian experts calls for the Land Down Under to step up its game

Still, the exercise is extremely appealing. Even with a growth factor of let’s say 1.7, an initial 10 millimeter domino piece could end up eventually toppling a domino piece the size of the empire state building after 244 pieces, for this simplified model at least. Wow, right?

Leeuwen’s model was described in a paper in the journal  Popular Physics.

via MIT Tech Review

Tags: dominoenergypotential energy

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

a scale weighing renewables and fossil fuels
News

Over 90% of global renewable power projects are now cheaper than fossil fuels

byMihai Andrei
3 weeks ago
Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
2 months ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
2 months ago
News

We Could One Day Power a Galactic Civilization with Spinning Black Holes

byTibi Puiu
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.