ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Comets have a heavy metal atmosphere

Astronomers have discovered iron and nickel vapour in the atmospheres of comets distant from the Sun and surrounding the interstellar visitor 2I/Borisov.

Rob LeabyRob Lea
May 19, 2021
in Astronomy, Astronomy, Astrophysics, Physics, Science, Space, Telescopes
A A
Share on FacebookShare on TwitterSubmit to Reddit

Using data collected by the Very Large Telescope (VLT) a team of astronomers has discovered iron and nickel in the atmosphere of around 20 different solar system comets–including some located far away from the Sun.

These findings will come as a surprise to astronomers because even though such heavy metals have been known to exist in solid form within comet interiors before, the vapour of such elements has only previously been associated with cometary atmospheres in hot environments.

This is the first time such vapour has been seen in the cooler atmospheres of comets that exist far from a star and could indicate some previously unknown mechanism or material on the surface of comets.

“It was a big surprise to detect iron and nickel atoms in the atmosphere of all the comets we have observed in the last two decades, about 20 of them, and even in ones far from the Sun in the cold space environment,” says Jean Manfroid, of the University of Liège, Belgium.

ESO/L. Calçada, SPECULOOS Team/E. Jehin, Manfroid et al.

This wasn’t the only surprise the team found, however. The Belgian astronomers–who have been studying comets with the VLT for 20 years–observed nickel and iron in the atmosphere of the comet in equal amounts.

Generally, iron is about ten times more abundant in the solar system than nickel, and comets are believed to be material left over from the formation of planetary bodies within the solar system. That means it’s something of a mystery why the comets the team observed should have such a relatively large abundance of nickel.

“Comets formed around 4.6 billion years ago, in the very young Solar System, and haven’t changed since that time. In that sense, they’re like fossils for astronomers,” Emmanuel Jehin, also from the University of Liège. “This discovery went under the radar for many years.”

Manfroid and Jehin are two of the authors of a paper published in the latest edition of the journal Nature documenting the team’s findings. And that isn’t the only research revealing metal in the atmosphere of such a body published in Nature this month.


The discovery is accompanied by the revelation that a separate team of researchers, this time located in Poland, has also found traces of nickel vapour in the atmosphere around the interstellar visitor 2l/Borisov.

This comet may sound familiar as it made headlines in 2019 when it became only the second object found within the solar system which originated from outside our planetary system.

A paper detailing this second finding is also published in this month’s Nature.

Heavy Metal Rocks

Astronomers have known for some time that a variety of metals exist within the icy and rocky interiors of comets. There have even been suggestions that spent comets could be mined for precious or useful metals like gold, silver, platinum and iron.

This image features a comet located in the outer reaches of the Solar System: comet C/2016 R2 (PANSTARRS). (ESO/SPECULOOS Team/E. Jehin)

These solid metals within comets were not expected to be found as gases in the body’s atmosphere, though, unless that body is passing within close vicinity to a star.

It is the heat from these close brushes with stars like the Sun that causes solid metals within comets to ‘sublimate’–the process by which solid material changes directly into a gaseous state.

That means that distant comets in the cold environment of space away from the heat of the Sun shouldn’t have heavy metal atmospheres.

Yet, despite this, researchers have now found nickel and iron vapour in the atmospheres of comets up to 480 million kilometres from the Sun. A distance that is three astronomical units, or three times the distance between the Sun and the Earth.

In order to make this discovery, the team employed the technique of spectroscopy which reveals the signatures of specific chemical elements and the Ultraviolet and Visual Echelle Spectrograph (UVES) instrument on the VLT to assess the chemical composition of comets’ atmospheres.

The spectral lines of nickel and iron found by the team in comets’ atmospheres were extremely faint, which leads them to believe that the reason such elements have been missed in past is due to their tiny abundance. The team says that for every 100kg of water in the atmosphere of the comets they studied there is just one gram of iron and nickel respectively.

The Belgian astronomers believe that the equal amounts of iron and nickel together with the sublimation at low temperatures means there is something undiscovered at the surface of the comets they studied.

An artist’s impression of the completed ELT, which could play an important role in the investigation of cometary atmospheres. (ESO)

“Usually there is 10 times more iron than nickel, and in those comet atmospheres we found about the same quantity for both elements,” explains Damien Hutsemékers, also a member of the Belgian team from the University of Liège.”We came to the conclusion they might come from a special kind of material on the surface of the comet nucleus, sublimating at a rather low temperature and releasing iron and nickel in about the same proportions.”

The team intends to attempt to use new telescope technology such as the Mid-infrared ELT Imager and Spectrograph (METIS) on ESO’s upcoming Extremely Large Telescope (ELT)–currently under construction in the Atacama Desert region of Northern Chile– to discover what this material is.

The findings of this team are accompanied by the revelation that nickel vapour has also been discovered in the atmosphere of 2I/Borisov.

2I/Borisov: The Interstellar Intruder that keeps giving

The discovery that metal is also present in the atmosphere of the interstellar visitor 2I/Borisov was made by a team of astronomers in Poland. The team also used the VLT to catch a glimpse of the interstellar comet as it passed through the solar system.

The data collected with the VLT’s X-Shooter spectrograph revaled nickel vapour in the cold envlope surround 2I/Borisov.

ESO/L. Calçada/O. Hainaut, P. Guzik and M. Drahus

The discovery marks another surprise for astronomers, as again it details the discovery of sublimated heavy metals in a cold atmosphere.

“At first we had a hard time believing that atomic nickel could really be present in 2I/Borisov that far from the Sun,” says Piotr Guzik, the Jagiellonian University, Poland, a co-author on this second study. “It took numerous tests and checks before we could finally convince ourselves.”

This latter study shows that nickel was not uniquely present during the formation of our solar system, but as it can be seen in a comet from another planetary grouping, it may well be common in many such conglomerations.

RelatedPosts

Meet Hygiea, the Smallest Dwarf Planet in Our Solar System
Probe launched 30 years ago is held back by mysterious unexplained force
New dwarf planet discovered in outskirts of solar system beyond Neptune
Saturn’s moon full of geysers

 “All of a sudden we understood that gaseous nickel is present in cometary atmospheres in other corners of the Galaxy,” Michał Drahus, also from the Jagiellonian University and another of the paper’s co-authors, says.

In unison, both these studies indicate that the comets of this solar system and the interstellar visitor 2I/Borisov share many similarities. Dahus adds: “Now imagine that our Solar System’s comets have their true analogues in other planetary systems — how cool is that?”

Jehin, meanwhile, believes these studies could inspire future research into cometary bodies and their atmospheres, and a re-examination of data already collected.

“Now people will search for those lines in their archival data from other telescopes,” the University of Liège researcher concludes. “We think this will also trigger new work on the subject.”

Tags: 2I/Borisovcomet atmospherescometary compositioncometsplanet formationsolar system

ShareTweetShare
Rob Lea

Rob Lea

Robert is a member of the Association of British Science Writers and the Institute of Physics, qualified in Physics, Mathematics and Contemporary science.

Related Posts

News

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

byHannah Wakefordand1 others
1 week ago
This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
2 months ago
News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
4 months ago
Science

Ancient Water, Alien Salts, and Life’s Building Blocks Were All Found in Bennu Asteroid

byTimothy McCoy
8 months ago

Recent news

New Liquid Uranium Rocket Could Halve Trip to Mars

September 16, 2025

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

September 16, 2025

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

September 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.