Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result

Home → Science → News

Used cigarette buds could provide energy storage sollution

Scientists have found a way to transform cigarette buds into a material which stores energy cheap and efficiently. The material outperforms both commercial and prototypical materials made from graphene and carbon nanotubes and may be eventually added into computers, smart phones or wind turbines.

Mihai Andrei by Mihai Andrei
August 7, 2014
in News, Physics

A group of South Korean researchers has transformed used cigarette buds into a high-performing energy storing material which could be integrated into computers, handheld devices, electrical vehicles and wind turbines.

Cigarette buds may provide cheap and efficient energy storage.

Interestingly enough, the new material significantly outperformed commercially available carbon, graphene and carbon nanotubes. When you consider the 5.6 trillion used-cigarettes, or 766,571 metric tons that are deposited into the environment worldwide every year, the advantages of such a material become even more evident. Basically, you take a pollution problem and turn it into an advantage.

Co-author of the study Professor Jongheop Yi, from Seoul National University, said:

“Our study has shown that used-cigarette filters can be transformed into a high-performing carbon-based material using a simple one step process, which simultaneously offers a green solution to meeting the energy demands of society. Numerous countries are developing strict regulations to avoid the trillions of toxic and non-biodegradable used-cigarette filters that are disposed of into the environment each year — our method is just one way of achieving this.”

Carbon is the most used element in supercapacitors, due to its relatively low cost, high surface area, high electrical conductivity and long term stability. Now, scientists are focused on improving the capacities of carbon supercapacitors, while also reducing production costs. In this study, they have shown that cellulose acetate fibres (the main component in cigarette filters) could be transformed into a carbon-based material using pyrolysis – a simple burning technique. Following the burning process, the resulting material has with many tiny pores which increase performance as a supercapacitive material.

“A high-performing supercapacitor material should have a large surface area, which can be achieved by incorporating a large number of small pores into the material,” continued Professor Yi. A combination of different pore sizes ensures that the material has high power densities, which is an essential property in a supercapacitor for the fast charging and discharging.”

After composing their theory and creating the material, they set out to test iti n a three-electrode system to see how well it stores energy. The results were remarkable – the material stored a higher amount of electrical energy than commercially available carbon and even had a higher amount of storage compared to graphene and carbon nanotubes, as reported in previous studies. So not only did it outperform commercially available products, it also outperformed other prototypes with much fancier materials.

Scientific Reference: Minzae Lee, Gil-Pyo Kim, Hyeon Don Song, Soomin Park, Jongheop Yi. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology, 2014; 25 (34): 345601 DOI: 10.1088/0957-4484/25/34/345601

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Researchers create first graphene ear buds – yes, they’re awesome
  2. High tech farm aims to clean up Fukushima and provide energy
  3. World’s largest solar plant switches on, will soon provide energy for 1.1 million people
  4. Trees could be used for high tech energy storage devices
  5. Fractal-etched graphene electrode boosts solar energy supercapacitor storage by 3,000%
Tags: cigarettepollutionSeoul National Universitysupercapacitor

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW