Quantcast
ZME Science
  • CoronavirusNEW
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science
No Result
View All Result
Home Other Feature Post

Could you balance a pencil on a one-atom thick tip?

It's Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking.

Tibi Puiu by Tibi Puiu
September 7, 2018
in Feature Post, Physics
ADVERTISEMENT

It’s Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking. Let’s imagine a   perfectly symmetrical pencil in terms of density, whose tip – just one atom thick of graphite – lies on a perfectly smooth surface. We want it to be perfectly still and perfectly upright to balance on the surface. The real world isn’t perfect of course, but these sort of assumptions are important to make the problem tractable since we can describe the system’s behavior through equations that can predict what happens next, like will the pencil balance or not? Well, first of all the pencil balancing act fails almost immediately depending on far you want to go with “perfect” model assumptions. One single photon hitting the pencil is enough to unbalance the graphite rod. Then there are tidal forces exerted by the moon and the sun. Then of course, given Earth’s gravity, only one atom thick tip can’t sustain the weight of a pencil and would break. For graphite, the thinnest tip you could use to withstand the weight of a pencil is 0.01 millimeters, which is amazingly sharp by not nearly atomic.

Even if we cool to absolute zero, vacuum and put the pencil in a pitch black room, in the end, it would all boil down to quantum mechanics toppling our pencil. A clever Physics Stackexchange user called Floris sums it up for us:

Momentum and position form a conjugate pair. ΔxΔp≥ℏ.

Angular momentum and angular position form one too. ΔLΔΘ≥ℏ

This doesn’t guarantee that angular momentum and angular position will be non-zero. It is an uncertainty – The actual values can be anything, including 0.

But it does prevent you from arranging them both so the pencil stays upright. Furthermore, if you ask what the probability of finding both values very close to 0, you find that it is very small. In the limit, infinitely improbable.

If it turns out that L=Θ=ℏ√, and you plug in reasonable values for the mass and length of the pencil, you will find it falls over in a few seconds.

Another very in-depth explanation of the one-atom-thick pencil problem can be found at The Virtuosi.

Get more science news like this...

Join the ZME newsletter for amazing science news, features, and exclusive scoops. More than 40,000 subscribers can't be wrong.

   

ADVERTISEMENT

Tags: pencil
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines.

Follow ZME on social media

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
  • Coronavirus
  • News
  • Environment
  • Health
  • Future
  • Space
  • Feature
  • More

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Coronavirus
  • News
  • Environment
    • Climate
    • Animals
    • Renewable Energy
    • Eco tips
    • Environmental Issues
    • Green Living
  • Health
    • Alternative Medicine
    • Anatomy
    • Diseases
    • Genetics
    • Mind & Brain
    • Nutrition
  • Future
  • Space
  • Feature
    • Feature Post
    • Art
    • Great Pics
    • Design
    • Fossil Friday
    • AstroPicture
    • GeoPicture
    • Did you know?
    • Offbeat
  • More
    • About
    • The Team
    • Advertise
    • Contribute
    • Our stance on climate change
    • Privacy Policy
    • Contact

© 2007-2019 ZME Science - Not exactly rocket science. All Rights Reserved.