ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Could you balance a pencil on a one-atom thick tip?

It's Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking.

Tibi PuiubyTibi Puiu
April 18, 2015 - Updated on April 29, 2023
in Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Myth busted: Americans spent millions to make a pen that would flow in space — the Russians used a pencil
How does an eraser work?

It’s Saturday, so time for some fun physics. This non-trivial question is often asked in international physics contests and requires a bit of out of the box thinking. Let’s imagine a   perfectly symmetrical pencil in terms of density, whose tip – just one atom thick of graphite – lies on a perfectly smooth surface. We want it to be perfectly still and perfectly upright to balance on the surface. The real world isn’t perfect of course, but these sort of assumptions are important to make the problem tractable since we can describe the system’s behavior through equations that can predict what happens next, like will the pencil balance or not? Well, first of all the pencil balancing act fails almost immediately depending on far you want to go with “perfect” model assumptions. One single photon hitting the pencil is enough to unbalance the graphite rod. Then there are tidal forces exerted by the moon and the sun. Then of course, given Earth’s gravity, only one atom thick tip can’t sustain the weight of a pencil and would break. For graphite, the thinnest tip you could use to withstand the weight of a pencil is 0.01 millimeters, which is amazingly sharp by not nearly atomic.

Even if we cool to absolute zero, vacuum and put the pencil in a pitch black room, in the end, it would all boil down to quantum mechanics toppling our pencil. A clever Physics Stackexchange user called Floris sums it up for us:

Momentum and position form a conjugate pair. ΔxΔp≥ℏ.

Angular momentum and angular position form one too. ΔLΔΘ≥ℏ

This doesn’t guarantee that angular momentum and angular position will be non-zero. It is an uncertainty – The actual values can be anything, including 0.

But it does prevent you from arranging them both so the pencil stays upright. Furthermore, if you ask what the probability of finding both values very close to 0, you find that it is very small. In the limit, infinitely improbable.

If it turns out that L=Θ=ℏ√, and you plug in reasonable values for the mass and length of the pencil, you will find it falls over in a few seconds.

Another very in-depth explanation of the one-atom-thick pencil problem can be found at The Virtuosi.

Tags: pencil

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

russian space writer
Spaceflight and Exploration

Myth busted: Americans spent millions to make a pen that would flow in space — the Russians used a pencil

byTibi Puiu
8 years ago
eraser gif
Lifestyle

How does an eraser work?

byKeerthi Vasan
10 years ago

Recent news

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

May 15, 2025

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

May 15, 2025

Scientists Found ‘Anti Spicy’ Compounds That Make Hot Peppers Taste Milder

May 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.