ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Astrophysicists destroy virtual stars to simulate the birth of black holes

No real stars were hurt...

Tibi PuiubyTibi Puiu
May 12, 2020
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist impression of a supernova. Credit: Pixabay.

By employing the resources of one of the fastest supercomputers in the world, astrophysicists in Australia have simulated the last days of very large stars with masses many times that of the Sun. Their simulation provides new valuable insights into how massive stars end with a bang as they explode in supernovae events and how black holes and neutron stars rise out of the ashes.

Cosmic chaos inside a computer chip

The state-of-the-art OzSTAR supercomputer at the Swinburne University of Technology crunched the numbers for various simulations that modeled the core-collapse of three stars. These virtual stars are 39, 20, and 18 times more massive than the sun, respectively.

When such massive stars reach the end of their life cycles, they typically experience a core-collapse supernova. When this happens, they turn into some of the brightest objects in the universe. And, in the aftermath, they are ready to become neutron stars or black holes.

This extremely dramatic stellar death also generates gravitational waves, whose signature can inform astrophysicists about how both black holes and neutron stars are birthed — this was the main aim of this simulation.

For instance, in 2017, astronomers detected a cosmic cataclysmic event: The merger of two neutron stars from 130 million years ago. The force of the collision was so strong that it literally shook the fabric of space-time, generating gravitational waves that eventually reached Earth, where they were detected. The two neutron stars either merged into a huge single neutron star or collapsed into a black hole.

A 3D-volume render of a core-collapse supernova. Credit: Bernhard Mueller, Monash University.

But in order to detect various core-collapse supernovae from gravitational waves, scientists need to know what such signals will look like.

The new simulation modeled complicated physics, informing scientists what kind of signals they should expect to see in their detectors when a star explodes.

RelatedPosts

Astronomers say exploding stars might have forced our ancestors to walk upright
Double Trouble! Hunting for Supermassive Black Hole Mergers
Farthest supernova discovered by Hubble helps unravel Universe secrets
2020: A Year in Space

“Our models are 39 times, 20 times, and 18 times more massive than our sun. The 39-solar mass model is important because it’s rotating very rapidly, and most previous long-duration core-collapse supernova simulations do not include the effects of rotation,” said Jade Powell, a postdoctoral researcher at OzGrav.

According to the results, which were described in the Monthly Notices of the Royal Astronomical Society, the two most massive virtual stars generated explosions powered by neutrinos, while the smallest virtual star didn’t explode at all.

Such stars that don’t go fully supernova emit lower amplitude gravitational waves, but their frequency is still within detectable ranges of current detectors in use.

The findings also suggest that exploding stars producing large gravitational-wave amplitudes could be detected by the next generation of detectors, such as the upcoming Einstein Telescope.

“For the first time, we showed that rotation changes the relationship between the gravitational-wave frequency and the properties of the newly-forming neutron star,” explains Powell.

Tags: Black holesneutron starssupernova

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Astronomy

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

byTudor Tarita
1 week ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
4 weeks ago
News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
1 month ago
News

Early cosmic explosions may have filled the young universe with water

byJordan Strickler
5 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.