ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists turn DNA into virtually any 3D shape imaginable

The fist DNA benders!

Mihai AndreibyMihai Andrei
December 13, 2017
in Nanotechnology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists have made a significant advancement in shaping DNA — they can now twist and turn the building blocks of life into just about any shape. In order to demonstrate their technique, they have shaped DNA into doughnuts, cubes, a teddy bear, and even the Mona Lisa.

New DNA origami techniques can build virus-size objects of virtually any shape. Image credits: Wyss Institute.

Scientists have long desired to make shapes out of DNA. The field of research emerged in the 1980s, but things really took off in 2006, with the advent of a technique called DNA origami. As the name implies, it involves transforming DNA into a multitude of shapes, similar to the traditional Japanese technique of origami. The process starts with a long strand placed on a scaffold with the desired sequence of nucleotides, dubbed A, C, G, and T. Then, patches of the scaffold are matched with complementary strands of DNA called staples, which latch on to their desired target. In 2012, a different technique emerged — one which didn’t use scaffolds or large strands of DNA, but rather small strands that fit together like LEGO pieces.

Both techniques became wildly popular with various research groups. Scientists started to coat DNA objects with plastics, metals, and other materials to make electronic devices, electronics, and even computer components. But there was always a limitation: the size of conventional DNA objects has been limited to about 100 nanometers. There was just no way to make them bigger without becoming floppier or unstable in the process. Well, not anymore.

New DNA origami techniques can make far larger objects, such as this dodecahedron composed of 1.8 million DNA bases. Image credits: K. Wagenbauer et al, Nature, Vol. 551, 2017.

Groups in Germany, Massachusetts, and California all report that they’ve made dramatic breakthroughs in DNA origami, creating rigid modules with preprogrammed shapes that can assemble with other copies to build specific shapes — and they have a variety of shapes to prove it.

A German team, led by Hendrik Dietz, a biophysicist at the Technical University of Munich, created a miniature doughnut about 300 nanometers across. A Massachusetts team led by Peng Yin, a systems biologist at Harvard University’s Wyss Institute in Boston, created complex structures with both blocks and holes. With this technique, they developed cut-out shapes like an hourglass and a teddy bear. The third group led by Lulu Qian, a biochemist at the California Institute of Technology in Pasadena, developed origami-based pixels that appear in different shades when viewed through an atomic microscope. Taken together, these structures represent a new age for DNA origami.

Furthermore, it’s only a matter of time before things get even more complex. Yin’s group actually had to stop making more complex shape sbecause they ran out of money. Synthesizing the DNA comes at the exorbitant price of $100,000 per gram. However, Dietz and his collaborators believe they could dramatically lower the price by coaxing viruses to replicate the strands inside bacterial hosts.

“Now, there are so many ways to be creative with these tools,” Yin concludes.

The technique isn’t just about creating pretty DNA shapes. Someday, this approach could lead to a novel generation of electronics, photonics, nanoscale machines, and possibly disease detection, Robert F. Service writes for Science. The prospect of using DNA origami to detect cancer biomarkers and other biological targets could open exciting avenues for research and help revolutionize cancer detection.

RelatedPosts

Another study confirms the Milky Way is warped and twisted rather than a flat disc
IBM nanoparticle destroys drug resistant bacteria
Almost 40% of at-home DNA tests are inaccurate, scientists warn
Scientists use nano-ink to 3D print color-changing cup

Journal References:

  1. Klaus F. Wagenbauer, Christian Sigl & Hendrik Dietz. Gigadalton-scale shape-programmable DNA assemblies. doi:10.1038/nature24651.
  2. Grigory Tikhomirov, Philip Petersen & Lulu Qian. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. doi:10.1038/nature24655.
  3. Luvena L. Ong et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. doi:10.1038/nature24648.
  4. Florian Praetorius et al. Biotechnological mass production of DNA origami. doi:10.1038/nature24650.
Tags: dnananotechnologyShape

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
1 day ago
Future

Researchers create contact lenses that let you see in the dark, even with your eyes closed

byMihai Andrei
3 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Genetics

Scientists Close to Finding Leonardo da Vinci’s DNA Using a 21-Generation Family Tree

byTibi Puiu
3 weeks ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.