ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

This 525-million-year-old fossil is challenging what we know about how the brain evolved

The world's oldest fossilized brain reveals a turning point in the evolution of the nervous system.

Tibi PuiubyTibi Puiu
November 28, 2022
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists were revisiting the 525-million-year-old fossil of a tiny sea creature first unearthed in 1984 in China’s southern Yunnan province when they came across an unexpected discovery. Paleontologists were stunned to find that the ancient creature’s brain was also fossilized, an exceptionally rare occurrence, especially for a fossil this old. In fact, it may very well be the oldest brain fossil ever found — and that’s far from all.

The fossil of Cardiodictyon catenulum. Its head is orientated toward the right-hand side. Credit: Nicholas Strausfeld.

Neuroscientists led by Nicholas Strausfeld from the University of Arizona and Frank Hirth from King’s College London zoomed in on the fossilized brain of the extinct arthropod and, to everyone’s surprise, found a segmented nervous system in the animal’s trunk. Meanwhile, the head and brain of the animal lacked any sign of segmentation.

This is a much bigger deal than it might sound at first and could rewrite what we know about the origin and composition of the brain of arthropods, which includes insects, arachnids, and crustaceans.

“This anatomy was completely unexpected because the heads and brains of modern arthropods, and some of their fossilized ancestors, have for over a hundred years been considered as segmented,” Strausfeld said.

“From the 1880s, biologists noted the clearly segmented appearance of the trunk typical for arthropods, and basically extrapolated that to the head,” Hirth said. “That is how the field arrived at supposing the head is an anterior extension of a segmented trunk.”

Fossilized head of Cardiodictyon catenulum (anterior is to the right). The magenta-colored deposits mark fossilized brain structures. Credit: Nicholas Strausfeld

The newly inspected fossil, of a wormlike animal called Cardiodictyon catenulum, shows that the heads of some of the earliest arthropods weren’t segmented at all, nor were their brains. It follows that the brain and the trunk nervous systems must have evolved separately.

Cardiodictyon catenulum was alive more than 500 million years ago, around the time of the Cambrian period, a turning point in life’s evolutionary history that saw the most intense period of evolution and is the time when most of the major groups of animals first appear in the fossil record. Given its primitive nervous system arrangement, scientists think that armored lobopodians (the group Cardiodictyon catenulum belongs to) were probably the earliest arthropods, predating even the iconic trilobites, the most diverse group of animals preserved in the fossil record, which went extinct some 250 million years ago.

RelatedPosts

First was the genome. Now, it’s time for the screenome
Ancient mass grave discovered under a supermarket in Paris
Amazing Brain Art
The small town in Germany where both the car and the bicycle were invented
Artist’s impression of an individual 525-million-year-old Cardiodictyon catenulum on the shallow coastal sea floor, emerging from the shelter of a small stromatolite built by photosynthetic bacteria. Credit: Nicholas Strausfeld/University of Arizona

The researchers not only identified the brain of Cardiodictyon, a challenging feat in and of itself that required a special technique called chromatic filtering that isolates different wavelengths of light from high-res images to map internal structure but also compared it with those from other known fossils and living arthropods.

The comparative analysis could link specific anatomical features to gene expression patterns, suggesting that a shared blueprint of brain organization has been maintained from the Cambrian until today, a truly remarkable feat of continuity.

“By comparing known gene expression patterns in living species,” Hirth said, “we identified a common signature of all brains and how they are formed.”

The researcher added that three of Cardiodictyon‘s brain domains are each associated with a characteristic pair of head appendages and with one of the three parts of the anterior digestive system.

“We realized that each brain domain and its corresponding features are specified by the same combination genes, irrespective of the species we looked at,” added Hirth. “This suggested a common genetic ground plan for making a brain.”

As for the findings’ implications for vertebrates, such as humans, the researchers say that there may be some important connections. For instance, the brains of mammals and other vertebrates show a similar distinct architecture in which the forebrain and midbrain are genetically and developmentally distinct from the spinal cord.

Animals like Cardiodictyon eventually gave rise to the world’s most diverse group of organisms, the euarthropods — invertebrates with jointed legs like ants and spiders.

The findings were reported in the journal Science.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
15 hours ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
16 hours ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
21 hours ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
22 hours ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.