ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Thermal camouflage can disguise you in both warm and cold environments

So long, predator vision!

Tibi PuiubyTibi Puiu
June 28, 2018
in Nanotechnology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Hunters or soldiers wear camouflage to blend with the surroundings and make themselves inconspicuous. Modern thermal vision, however, will make any warm-blooded animal pop up like a light bulb even in pitch-black darkness. This is where thermal-camo comes in.

After some previous failed attempts, an international team of researchers has now demonstrated one of the most promising thermal-camouflages to date. Their device made a hand’s thermal signature blend with the environment in a matter of minutes after it was switched on. It worked for both hot and cold environments.

Credit: American Chemical Society.
Credit: American Chemical Society.

Thermal cameras detect objects by reading the infrared radiation emitted by it. Infrared light is invisible to the naked eye but can be felt as heat if the intensity is high enough. In other words, thermal cameras more or less record the temperature of various objects in their line of sight, and then assign each temperature a shade of a color, allowing you to see how much heat its radiating compared to objects around it. Colder temperatures are typically given a shade of blue, purple, or green, while warmer temperatures can be assigned a shade of red, orange, or yellow. This is just a matter of visual representation.

In police helicopters, for instance, thermal night vision is very important since it allows officers to quickly differentiate a person from the rest of the environment. Utility and energy companies use it to see where a house might be losing heat through door and window cracks, or whether a heating system is functioning properly. Doctors sometimes use thermal vision to diagnose various disorders and diseases.

But does this mean that there’s no escaping thermal imaging?

Writing in the journal Nano Letters, Coskun Kocabas, a professor of 2D materials at the University of Manchester, UK — where graphene was also first developed — describes a new system that can relatively quickly reconfigure its thermal appearance to blend with the environment.

Previous attempts had encountered various problems such as slow response speed, lack of adaptability to different temperature regimes, and the exclusive use of rigid materials. Kocabas and colleagues have worked around all of these challenges by working with a fast, rapidly adaptable, and flexible material.

RelatedPosts

If there was life on Mars, it likely drove itself extinct through climate-change
New research closes in on the causes of irritable bowel syndrome
Convenience or culprit? Checkout aisles overflow with unhealthy snacks and drinks
Space doesn’t make for a good sleeping spot, a new paper reports

Their camouflage system is comprised of a membrane soaked with an ionic liquid sandwiched between a top electrode made of graphene and a bottom electrode from a gold coating on a heat-resistant nylon. The ionic liquid, which contains both positively and negatively charged ions, responds to a small voltage by releasing ions into the graphene, thereby reducing infrared radiation emissions from its surface.

“The demonstrated devices are light (30 g/m2), thin (<50 μm), and ultraflexible, which can conformably coat their environment. In addition, by combining active thermal surfaces with a feedback mechanism, we demonstrate realization of an adaptive thermal camouflage system which can reconfigure its thermal appearance and blend itself with the varying thermal background in a few seconds,” the authors of the new study wrote.

The whole system is thin, light, and can bend around objects, such as a person’s body parts. To demonstrate all these features, the researchers bent the system around a person’s hand, whose thermal signature then became indistinguishable from its surroundings, in both warmer and cooler environments. Besides camouflage, the new system could be used in a number of technical systems, such as adaptive heat shields for satellites.

Share7TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Chemistry

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

byTibi Puiu
5 hours ago
Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago

Recent news

New Hydrogel Is So Sticky It Can Hold a Rubber Duck to a Rock Through Crashing Ocean Waves

August 17, 2025

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.