ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The messy birth of Earth’s oxygen atmosphere took at least 200 million years

A new study shows Earth's Great Oxidation Event was a prolonged, chaotic process lasting 200 million years with fluctuating oxygen levels

Tibi PuiubyTibi Puiu
June 14, 2024
in Geology, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s rendering of the Archean Eon. Note the shallow sea full of stromatolites, or mats of cyanobacteria, on the right.
Artist’s rendering of the Archean Eon. Note the shallow sea full of stromatolites, or mats of cyanobacteria, on the right. Credit: Tim Bertelink.

For billions of years, Earth lacked the oxygen-rich atmosphere that sustains life today. A new study reveals a surprising truth about the Great Oxidation Event (GOE), the pivotal period when oxygen began to accumulate in our planet’s atmosphere. It wasn’t a single, swift event, but a prolonged process marked by fits and starts.

Rather than a single on-switch, the GOE lasted at least a staggering 200 million years. During this time, oxygen levels shot up only to be pulled back down by geochemical processes that absorbed the free oxygen from the atmosphere. This was an incredibly long chemical tug-of-war that lasted until about 2.2 billion years ago.

“Emerging data suggest that the initial rise of O2 in Earth’s atmosphere was dynamic,” said lead author Chadlin Ostrander, an assistant professor at the University of Utah. “Our data validate this hypothesis, even going one step further by extending these dynamics to the ocean.”

The long road from deadly gas to fresh air

Ostrander and colleagues tracked fluctuations in oxygen during Earth’s ancient geological past by studying marine shale—sedimentary rocks formed from ancient ocean mud—from South Africa’s Transvaal Supergroup.

By analyzing stable thallium (Tl) isotope ratios and redox-sensitive elements, the team found evidence of fluctuating oxygen levels in the oceans that mirrored changes in the atmosphere. Redox-sensitive elements are elements that change their chemical form depending on the presence or absence of oxygen.

The study showed that the rise of oxygen in Earth’s atmosphere was chaotic until about 2.2 billion years ago. The data also shows that these fluctuations mirrored oxygen levels in the ocean. This is a particularly important observation because early life likely originated and evolved in the oceans.

“So the atmosphere and ocean were becoming oxygenated and deoxygenated together. This is new and cool information for those interested in ancient Earth,” said Ostrander.

RelatedPosts

Earth’s rotational slowdown may have led to life as we know it
Early life kept oxygen in check and stalled evolution for billions of years, model suggests
NASA announcement: Martian atmosphere was stripped by solar wind
Earth’s prehistoric atmosphere was covered in a haze similar to Saturn’s moon, Titan

“Knowing the O2 content of the oceans and how that evolved with time is probably more important for early life than the atmosphere.”  

These findings build on previous work by Ostrander’s colleagues, Simon Poulton and Andrey Bekker. Their 2021 study revealed that oxygen did not become a permanent part of the atmosphere until about 200 million years after the GOE began. Scientists could tell when Earth’s atmosphere and oceans were largely devoid of oxygen by identifying sulfur isotope signatures in ancient sediments. This “smoking gun” signature cannot appear unless the environment lacks oxygen.

Ancient Atmosphere

Before the GOE, Earth’s atmosphere was predominantly methane, ammonia, water vapor, and nitrogen, with little to no free oxygen. Yet even under these hellish conditions during the Archean Eon, primitive life forms like anaerobic bacteria thrived.

Photosynthetic organisms, such as cyanobacteria (known as blue-green algae), later emerged but their activity was limited by the thick atmosphere that blocked a lot of the sun. Living in mats of sediment and cells on the ocean floor, they formed structures called stromatolites, which are common fossils from the Archean period. These fossils often show evidence of phototaxis, indicating that the cyanobacteria followed sunlight to photosynthesize.

When free oxygen was produced in more abundant quantities, it was absorbed by minerals and volcanic gases. The findings show that oxygen levels rose and fell repeatedly during the GOE. It was no “single” event but rather a series of ups and downs. Oxygen levels were like the stock market, and it apparently took 200 million years until Earth and life on it entered a radically new stage. Exactly what pushed the planet out of this repeating cycle is still an open question.

“Earth wasn’t ready to be oxygenated when oxygen starts to be produced. Earth needed time to evolve biologically, geologically and chemically to be conducive to oxygenation,” Ostrander said. “It’s like a teeter totter. You have oxygen production, but you have so much oxygen destruction, nothing’s happening. We’re still trying to figure out when we’ve completely tipped the scales and Earth could not go backwards to an anoxic atmosphere.”

The Great Oxidation Event represents a cornerstone in Earth’s history. It marks the advent of photosynthesis and biological oxygen production, setting the stage for the evolution of complex life and dramatically transforming our planet’s environment. We’re now stepping closer to unraveling this delicate but pivotal period. And we are finding it was much more complex and dynamic than previously thought.

The findings appeared in the journal Nature.

Tags: atmosphereearly EarthGreat Oxidationoxygen

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

photic
News

A Massive Part of the Ocean Is Getting Darker and It’s Already Impacting Sea Life

byJordan Strickler
2 weeks ago
News

Van Gogh’s ‘Starry Night’ Is Surprisingly Scientifically Accurate, Mirroring Complex Atmospheric Physics

byIsabel Gauthier
9 months ago
moon
News

Yes, the Moon does have a (ghostly thin) atmosphere — and it was made possible by meteorite impacts

byJordan Strickler
10 months ago
Biology

Scientists discover mysterious “dark oxygen” on ocean floor which could rewrite origin of life

byTibi Puiu
11 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.