ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Yes, the Moon does have a (ghostly thin) atmosphere — and it was made possible by meteorite impacts

Meteorites keep the Moon's fragile atmosphere alive.

Jordan StricklerbyJordan Strickler
August 6, 2024
in News, Space
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
Picture of the moon
Credit: Pixabay

Ever wondered if the moon has an atmosphere? Surprisingly, it does, but it’s nothing like Earth’s. According to recent research, it’s actually extremely thin and almost ghost-like.

Published in Science Advances, the study reveals that the Moon’s atmosphere, known as an “exosphere,” is primarily sustained by meteorite impacts and has been around for billions of years. These impacts have been occurring since the Moon’s formation, vaporizing parts of its surface and creating this weak atmosphere. Unlike Earth’s dense and breathable atmosphere, the Moon’s exosphere is composed of atoms that are so sparse they rarely collide with each other.

Some of these atoms escape into space, but many remain, creating a thin, fragile atmosphere. This process, known as impact vaporization means atoms are being lofted upward and then settling back down, only to be kicked up again.

“We give a definitive answer that meteorite impact vaporization is the dominant process that creates the lunar atmosphere,” says the study’s lead author, Nicole Nie, an assistant professor in MIT’s Department of Earth, Atmospheric, and Planetary Sciences. “The Moon is close to 4.5 billion years old, and through that time the surface has been continuously bombarded by meteorites. We show that eventually, a thin atmosphere reaches a steady state because it’s being continuously replenished by small impacts all over the moon.” 

Solar wind is another main contributor. Called “ion sputtering,” it consists of charged particles from the Sun that knock atoms off the Moon’s surface. However, the study shows that meteorite impacts play a more significant role, contributing about 70% or more to the Moon’s atmosphere, with solar wind accounting for the rest.

The key to these discoveries lies in lunar soil samples brought back by the Apollo missions. Scientists crushed these samples into powder and analyzed the isotopes of the potassium and rubidium within them. Both elements are “volatile,” meaning that they are easily vaporized by impacts and ion sputtering. By examining the ratio of lighter to heavier isotopes, they determined that impact vaporization is the main process of forming the Moon’s atmosphere.

This isn’t the first time scientists have been interested in the Moon’s atmosphere. In 2013, NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) orbited the Moon to gather detailed data about its atmosphere. LADEE also showed that both meteorite impacts and solar wind contribute to the lunar exosphere.

RelatedPosts

China crashes Chang’e-5 spacecraft into moon after collecting first lunar samples in 45 years
How far is the Moon? Visualizing the distance
NASA finds ice on the Moon — raising prospects of a lunar colony
This is how the Moon looks under the microscope!

“Based on LADEE’s data, it seemed both processes are playing a role,” Nie says. “For instance, it showed that during meteorite showers, you see more atoms in the atmosphere, meaning impacts have an effect. But it also showed that when the Moon is shielded from the sun, such as during an eclipse, there are also changes in the atmosphere’s atoms, meaning the sun also has an impact. So, the results were not clear or quantitative.”

Understanding the Moon’s atmosphere helps scientists learn more about its history and the processes shaping its surface. This research also has implications for other celestial bodies. It shows the importance of sample-return missions, which provide the detailed data needed to find the atmospheres of other cosmic objects.

“The discovery of such a subtle effect is remarkable, thanks to the innovative idea of combining potassium and rubidium isotope measurements along with careful, quantitative modeling,” says Justin Hu, a postdoc who studies lunar soils at Cambridge University, who was not involved in the study. “This discovery goes beyond understanding the Moon’s history, as such processes could occur and might be more significant on other moons and asteroids, which are the focus of many planned return missions.”

Tags: atmosphereMoonmoon atmosphere

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

Science

A Rare ‘Micromoon’ Is Rising This Weekend and Most People Won’t Notice

byTibi Puiu
1 month ago
News

Scientists Say the Moon Was Once a Giant Ocean of Molten Rock

byTibi Puiu
2 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
2 months ago
News

Nokia Is Building a 4G Cell Network on the Moon and It’s Just the Beginning

byTibi Puiu
3 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.