ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

T. rex wasn’t that smart after all. Its intelligence was more on par with a large crocodile

Previous estimates of T-rex's brain power were vastly overestimated.

Tibi PuiubyTibi Puiu
April 29, 2024
in News, Paleontology
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
T. rex portrait
Credit: Wikimedia Commons/RawPixel.

Not too long ago, Brazilian neuroscientist Suzana Herculano-Houzel published a controversial study that boldly claimed that T. rex had an intellect rivaling modern baboons. The assumption was that Tyrannosaurus rex was very smart and might have even used tools (with those tiny hands?). It might have passed down knowledge to offspring through cultural transmission, this study said.

All of this naturally attracted a lot of media attention. Suddenly, the king of the dinosaurs was not only physically menacing but also ultrasmart (for a reptile) — that’s double the trouble.

However, a new study out this week would beg to differ, tempering our enthusiasm. According to an international team of paleontologists who took a second good look at Herculano-Houzel’s study, the estimates for the number of T. rex neurons were off. They provide a more conservative assessment instead, concluding that T. rex and other dinosaurs like it were probably as smart (or dumb) as modern-day crocodiles and lizards.

“Upon the publication of the original paper arguing many dinosaurs including T. rex had tremendously large neuron counts that possibly facilitated complex behaviours such as tool use, we immediately were curious of the methods used to reach these conclusions and the reliability of using neuron counts to predict intelligence. There has been much research into estimating neuron counts in living animals, but this has not been translated to the field of palaeontology, and that fascinated us,” co-author Hady George of the University of Bristol told ZME Science.

“After carefully reading through the original paper, we identified several shortcomings in the original paper and a lack of consideration for wider research in the field of palaeontology. This motivated us to attempt another go at estimating neuron counts in dinosaurs, and in particular T. rex as it has become a ‘model organism’ for fossil species. Our results made sense with what we already knew about dinosaur biology and intelligence, but we still believe that they are important and exciting as they are, so far, the most reliable estimates we have for how many neurons were in dinosaur brains.”

The pitfalls of estimating intelligence in dinosaurs

The earlier methodology used for assessing dinosaur brain size primarily relied on endocasts — natural or artificial molds of the brain cavity of the skull. These endocasts were assumed to accurately represent the brain’s size and shape, enabling neuroscientists to estimate brain volume. The basic morphological features were then compared to living species to infer cognitive abilities and behavioral traits. For instance, higher brain volumes relative to body size (encephalization quotient or EQ) were often linked with higher intelligence. The initial study crunched numbers that showed the T. rex EQ was about the same as that of primates.

However, this method had significant limitations. For one, it assumed that the endocast perfectly matched the brain’s morphology. This is not always true, especially in non-avian dinosaurs where the brain did not completely fill the cranial cavity. Secondly, using modern animals as direct analogs for extinct species ignores the vast evolutionary changes and adaptations that have occurred over millions of years.

“In the previous study, how densely the brains of dinosaurs were packed with neurons was determined by an attempt at deducing metabolism using a relative brain size metric. Basically, if the metric was high enough, the neuron density was thought to be the same as many warm-blooded modern birds, and if the metric was low enough, the neuron density was thought to be the same as many cold-blooded modern reptiles,” George said.

“This method is deeply flawed as it disregards other lines of evidence for inferring metabolism in dinosaurs and the differences in brain shape that are directly related to how densely neurons are packed in brains. We show that all dinosaurs, with the exception of those very closely related to birds, have brains that are probably packed with the same density as those of modern reptiles and not birds. This was a major reason why our results recovered dramatically lower neuron counts.”

Not a genius

The researchers argue that predicting intelligence in species that have been extinct for tens of millions of years simply by looking endocasts or brain cavities in general is not good practice. Instead, such investigations need to be more holistic. You need to look at other things too, such as skeletal anatomy, the behavior of living relatives, trace fossils, and so on.

Relationship between brain and body mass in land-living vertebrates
Relationship between brain and body mass in land-living vertebrates. Dinosaurs like T. rex have brain-to-body size ratios similar to those of living reptiles. Credit: Cristian Gutierrez-Ibanez.

Overall, the new study found that the previous estimate for the neuron count of T. rex was greatly overestimated, especially that of the forebrain. Rather than 3 billion neurons as previously stated, T. rex‘s brain had no more than 1.7 billion neurons. And even this figure may be too generous.

RelatedPosts

Your brain is cleaning itself while you’re dreaming, new research suggests
Brain-computer interface restores brain connectivity in injured rats
Mice with half human brains are smarter, some healthier
A software bug could render the last 15 years of brain research meaningless

Perhaps a more realistic neuron count hovers around 250 million, which is about as many neurons as the cat brain, a much smaller species. T. rex was probably more like a giant crocodile in intellect and behavior, rather than a baboon. But that’s not to say it was unsophisticated. T. rex was still cognitively capable of subduing dangerous prey, nesting, and courting mates.

“Our paper builds upon the previous paper arguing for greater neuron counts, by not only providing further research into estimating neuron numbers, but also providing an example of how to do so while avoiding critical pitfalls and in appreciation of the wider literature surrounding palaeobiology and animal behaviour and intelligence. We hope future studies explore neuron number estimates in other fossil groups as this has the potential to greatly inform on the evolution of brains and cognition.”

The findings appeared in the journal The Anatomical Record.

Tags: braint-rext. rextyrannosaurus rex

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
4 days ago
Future

Can you upload a human mind into a computer? Here’s what a neuroscientist has to say about it

byDobromir Rahnev
2 weeks ago
Genetics

Scientists Gave a Mouse a Stretch of Human DNA and Its Brain Grew 6% Bigger

byTudor Tarita
3 weeks ago
Health

Scientists Just Discovered What Happens in Your Brain During an Eureka Moment

byTudor Tarita
3 weeks ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.