ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists reproduce superionic ice thought to exist in Uranus’ core

Water was subjected to a pressure millions of times higher than at Earth's sea level.

Tibi PuiubyTibi Puiu
February 7, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Water is anything but boring, despite its prevalence and appearance. And in intensely pressurized and heated alien worlds, water can take on bizarre forms. Scientists recently produced superionic ice in the lab for the first time, which is a hybrid state of matter thought to occur naturally on planets like Uranus and Neptune.

Physicists shocked and compressed water inside a diamond anvil with state of the art lasers. Credit: M. Millot/E. Kowaluk/J.Wickboldt/LLNL/LLE/NIF.
Physicists shocked and compressed water inside a diamond anvil with state of the art lasers. Credit: M. Millot/E. Kowaluk/J.Wickboldt/LLNL/LLE/NIF.

Scientists first hypothesized that this state of water exists in off-world ice giants as early as three decades ago. After four years of research, a team comprised of scientists at the Lawrence Livermore National Laboratory, the University of Rochester, and the University of California, Berkeley, now has experimental evidence that backs this prediction.

In normal ambient pressure conditions, water that reaches its freezing point then crystallizes into hexagonal ice, also known as Ice-1-h. This is what you would call ‘normal’ ice because it’s the only kind you usually find on Earth — from Antarctica’s ice shelf to your kitchen freezer. In other extraterrestrial environments, scientists believe water can crystallize into more than 17 types of ice, some of which have been demonstrated in laboratory conditions.

In 2017, scientists at the Los Alamos National Laboratory observed water turning into Ice-VII (Ice Seven) for the first time. It was a huge breakthrough in science and involved using an array of lasers to squeeze water to a pressure exceeding 50,000 times that of Earth’s atmosphere at sea level.

Now, researchers yet again made Ice-VII, which is about 60% denser than Ice-1-h, but this time took things a step further. First, the team squeezed water using diamonds to apply a pressure 25,000 times greater than the pressure found at sea level. The cubic lattice of ice was then subjected to laser pulses of ultraviolet light, each only one nanosecond long. The Omega-6 laser housed at the University of Rochester’s Laboratory for Laser Energetics ended up simultaneously heating and compressing the Ice-VII.

The pressure was mind-bogglingly millions of times greater than the pressure of air in our atmosphere. What happened was the ice, now in a new configuration, became very conductive. The scientists claim that the matter turned into super–ionized water, comprised of liquid-like hydrogen ions moving within a solid lattice of oxygen.

The whole experiment lasted only 10 to 20 nanoseconds, after which the pressure-release waves decompress and vaporize the whole sample.

RelatedPosts

Water wells serving 2 million Americans could be contaminated with high levels of Arsenic
Martian atmosphere is not threatened by solar wind
Cheap water filter is fantastically efficient: absorbs heavy toxic metals and can recover gold
Rotterdam’s new sharks will eat all the trash in the port’s waters

After four years of experimenting and making measurements with cutting-edge analytical techniques, such as interferometric ultrafast velocimetry and pyrometry, the researchers are confident that they have found a novel kind of high-pressure ice that conducts electricity really well, they reported in the journal Nature Physics.

“Our work provides experimental evidence for superionic ice and shows that these predictions were not due to artifacts in the simulations, but actually captured the extraordinary behavior or water at those conditions,” said Marius Millot, lead author and a physicist at Lawrence Livermore.

For years, physicists have suspected that Uranus and Neptune have a thin layer of fluid and a large mantle-like layer of superionic ice.  But besides water, the core of these planets are also formed of methane and ammonia. It would be thus interesting to follow whether the superionic ice can still form in the presence of other molecules.

“It is gratifying that our experiments can test – and in fact, support – the thin-dynamo idea that had been proposed for explaining the truly strange magnetic fields of Uranus and Neptune,” said Raymond Jeanloz, co-author of the paper, from UC-Berkeley. “It’s also mind-boggling that frozen water ice is present at thousands of degrees inside these planets, but that’s what the experiments show.”

Tags: icewater

Share12TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
4 weeks ago
Environment

Mexico Will Give U.S. More Water to Avert More Tariffs

byKimberly M. S. Cartier
1 month ago
Geology

Exoplanets may have more water than we thought — but there’s a catch

byMihai Andrei
10 months ago
Geology

Mars may have a lot of water in its crust. It’s just too deep to use

byMihai Andreiand1 others
10 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.