ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

The Sun is slowly losing mass as it ages, weakening its grip on the planets

Are you breaking up with us, Sun?!

Alexandru MicubyAlexandru Micu
January 22, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

The Sun is losing its gravitational lock on the solar system, new research has found.

Mercury close to sun.
Image credits NASA/SDO.

The planets in our solar system are expanding their orbits, according to a team of NASA and MIT scientists. This drift is caused by the Sun slowly losing mass as it ages, which weakens its gravitational pull. The researchers studied Mercury’s orbit to indirectly measure the amount of mass our star lost.

Midlife crisis

The study began with the team refining Mercury’s ephemeris — its course around the Sun, charted over time. Scientists have been studying this planet and recording its position for centuries now, paying particular attention to its perihelion, the point in its orbit when it comes nearest the Sun.

Because we’ve had such a long observation period of the planet, we know that Mercury tends to shift its perihelion over time — a movement called precession. Part of the cause lies in other planets in the solar system, whose gravitational pulls gently tug at the scorched ball of rock. However, they don’t account for all of the observed precession. Most of what’s left, Einstein tells us, can be explained by the Sun’s mass warping space-time around it — this effect actually helped confirm the theory of general relativity.

But a small part of that precession motion comes down to tiny changes in the Sun’s internal structure and processes. Among them is the Sun’s oblateness (how much it bulges at the equator due to its spin). It was this last category of influences on Mercury’s precession that the team studied.

The researchers drew on radio data which tracked the position of NASA’s MESSENGER spacecraft (Mercury Surface, Space Environment, Geochemistry, and Ranging) while the mission was active. The vessel made three flybys over Mercury in 2008 and 2009 and subsequently orbited the planet from March 2011 through April 2015. By analyzing all the subtle changes in the planet’s motions throughout that time, the team could infer how the Sun’s physical parameters influence Mercury’s orbit.

Mercury Sun.
The position of Mercury over time was determined from radio tracking data obtained while NASA’s MESSENGER mission was active.
Image credits NASA / Goddard Space Flight Center.

They were able to separate some of these parameters from the star’s relativistic effects, something which previous research that looked at Mercury’ ephemeris never managed to do. At the same time, they developed a new analytical method that simultaneously estimated and integrated the orbits of Mercury and the MESSENGER craft. The end result is a solution which takes into account both relativistic effects and processes inside the Sun.

RelatedPosts

Nearly all fish in the US are still contaminated by mercury. Here’s what you need to know
NASA will soon launch a probe that will travel through the sun’s atmosphere — here’s what you need to know
A flat-earther brought a spirit level on a plane to prove the Earth is flat. Yeah…
Alarmingly high mercury concentrations in the Arctic might be due to Siberian rivers

“Mercury is the perfect test object for these experiments because it is so sensitive to the gravitational effect and activity of the Sun,” said lead author Antonio Genova.

The researchers obtained an improved estimate of oblateness that is consistent with other types of studies. However, their estimate of the rate at which the Sun loses mass represents one of the first times this value was based on observation rather than calculated through secondary data. Previously, scientists predicted a one-tenth of a percentage loss of the Sun’s mass over 10 billion years — corresponding to any planet widening its orbit by 1.5 cm (0.5 in) per year per AU (one AU, or astronomical unit, is the distance between the Earth and the Sun).

The team’s observations by-and-large reinforce that estimate — their result is just slightly lower, but being based on observation it is much less uncertain. The team’s results also allowed them to more accurately pin the value of G, the gravitational constant, improving its stability by a factor of 10 compared to previous, estimated values.

“We’re addressing long-standing and very important questions both in fundamental physics and solar science by using a planetary-science approach,” said Erwan Mazarico, paper co-author.

“By coming at these problems from a different perspective, we can gain more confidence in the numbers, and we can learn more about the interplay between the Sun and the planets.”

The paper “Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission” has been published in the journal Nature Communications.

Tags: gravitymercurysun

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

The Strongest Solar Storm Ever Was 500 Times More Powerful Than Anything We’ve Seen in Modern Times. It Left Its Mark in a 14,000-Year-Old Tree

byTibi Puiu
4 weeks ago
News

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

byTibi Puiu
1 month ago
News

Giant Planet Was Just Caught Falling Into Its Star and It Changes What We Thought About Planetary Death

byTudor Tarita
2 months ago
News

How a suitcase-sized NASA device could map shrinking aquifers from space

byJordan Strickler
2 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.