ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists extract human DNA from air and water, igniting privacy debate

It sounds like science fiction, but it’s actually happening

Fermin KoopbyFermin Koop
May 19, 2023
in Genetics, News
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
Human blueprint DNA illustration
Credit: Pixabay.

Signs of human life can be found almost everywhere. We cough, spit, shed and flush small pieces of our DNA into countless places, from ocean water to footprints on a beach. Now, scientists have discovered they can collect much more quality human DNA from water, sand, and air than was thought possible. This raises many ethical questions about privacy and consent.

Researchers from the University of Florida said the DNA was of such high quality that they could identify mutations linked with disease and determine the genetic ancestry of populations living nearby. They could also match genetic information to individual participants who had volunteered to have their DNA recovered as part of the research.

“Any time we make a technological advance, there are beneficial things that the technology can be used for and concerning things that the technology can be used for. It’s no different here,” David Duffy, study author, said in a statement. “These are issues we are trying to raise early so policymakers and society can develop regulations.”

Identifying eDNA

Researchers take out samples from the water
Easily sequenced DNA collected from the environment provides both opportunities and challenges for scientists. Image credit: Todd Osborne.

DNA that an organism sheds into the environment is known as environmental DNA, or eDNA. Scientists have collected and sequenced eDNA for decades from soil or water samples to monitor biodiversity, wildlife, and pathogens. These tools have been very useful to track rare or elusive endangered species, since observation can be difficult.

The researchers at the University of Florida normally use eDNA to study endangered turtles and the viral tumors to which they are susceptible. Turtles shed a lot of DNA as they crawl along the beach on their way to the ocean after they are born. Sand scooped from their tracks has enough DNA to give valuable insights to the researchers about the turtles.

But this time turtles weren’t their focus. The team suspected the samples they were using to study the turtles had DNA from other species, including humans. To better understand this, they took samples from several locations in Florida, including in the ocean, rivers, and beaches. They were quite surprised to find human DNA whose quality was suitable for analysis and sequencing.

With these bits of genetic material, they could uncover information about the people they came from. They found mutations linked to autism, diabetes, and eye diseases. The demographic information in the samples largely matches those of people in the area where the eDNA was found, and the scientists could even determine genetic ancestry.

The researchers tested this technique further by collecting water samples from a river in Ireland, where they also easily found human DNA. Finally, they gathered air samples from a room in a wildlife hospital in Florida. They recovered DNA matching the people, the animal patients, and common animal viruses present in the room at the time of collection.

RelatedPosts

Smoking one pack a day causes your lung cells’ DNA to mutate 150 times every year
Transistor gates created out of E. Coli bacteria – huge biocomputing leap forward!
Researchers develop nanospears that can transport DNA to cells with pinpoint accuracy
Genetic ‘typos’ may be a more powerful driver of cancer in humans than environmental factors

“Human eDNA could present significant advances to research in fields as diverse as conservation, epidemiology, forensics and farming,” the researchers wrote in a blog post in The Conversation. If it’s handled correctly, it could help biologists to monitor cancer mutations and archaeologists find undiscovered settlements, they added.

However, there are also many ethical implications relating to the deliberate or unintentional collection and analysis of human eDNA. Identifiable information can be obtained from it, and accessing this level of detail about individuals or groups comes with responsibilities about consent and confidentiality, the researchers added.

This triggers many questions, they said. Who should have access to human eDNA? Should this information be made publicly available? Should consent be needed before taking samples, and from whom? That’s why it will be necessary to implement rules to ensure that collection, analysis, and data storage are done appropriately, they added.

“Policymakers, scientific communities and other stakeholders need to take human eDNA collection seriously and balance consent and privacy against the possible benefits of studying eDNA. Raising these questions now can help ensure everyone is aware of the capabilities of eDNA and provide more time to develop protocols,” they wrote.

The study was published in the journal Nature.

Tags: dna

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Genetics

UK Families Welcome First Healthy Babies Born With DNA From Three People

byTudor Tarita
3 weeks ago
ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
3 weeks ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago
Health

Herpes Virus Hijacks Human DNA Within Just an Hour of Infection

byTudor Tarita
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.