ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Almost everything we know about salt may be wrong. Eating salt actually makes you less thirsty but hungrier

Turns out eating a high-salt diet makes the human body act like a camel hump. Read on...

Tibi PuiubyTibi Puiu
July 3, 2017 - Updated on April 25, 2019
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Does seeing this make you thirsty? Credit: Pixabay.
Does seeing this make you thirsty? Credit: Pixabay.

Some people can’t enjoy a meal without salt. Indeed, ancient Romans thought it was indispensable and used it as a trading medium on par with coins. The warriors serving the empire were actually paid with a handful of salt per day. Roman historian Pliny the Elder, stated as an aside in his Natural History’s discussion of sea water, that “In Rome…the soldier’s pay was originally salt and the word salary derives from it.” Today salt is so cheap, you could literally stock tens of tons it with an average San Francisco monthly wage.

But despite all its appeal going back millennia and its ubiquitous nature, we sure got a lot of things wrong about salt. A salty meal, be it fries and chicken or tortilla chips will warrant a drink or two to wash off all that saltiness. According to American and German researchers, salt actually makes you less thirsty. Not immediately, but within 24 hours, the salt intake will cause our bodies to produce water, a process akin how the camel draws water from its hump!

Dr. Jens Titze, now a kidney specialist at Vanderbilt University, has been studying human physiology in extreme environments for more than a quarter century. In 1991, he was attending a European space program course when data from a simulated 28-day mission caught his eye. He saw how the urine volumes went up and down in a seven-day cycle, something which went against what he was taught in med school since such a cycle shouldn’t exist.

Sodium — which forms an irresistible pair with chlorine which we all know and love as salt — is an essential mineral in living things for a variety of functions. In the human body, sodium levels have to be maintained at a certain level otherwise all sort of health problems can happen. Drinking excessive amounts of water, for instance, can drastically lower blood sodium, leading to a condition called hyponatremia. Many athletes have died from it. 

The consensus among doctors is that when we eat salt, we get thirsty, and the excess water dilutes the sodium in the blood to acceptable levels. This thinking is intuitive and simple to grasp. It might also be very much wrong.

When Russia made a 135-day simulation of life on the Mir space station in 1994, Titze found himself in Moscow studying the crew members’ urine patterns and these were affected by salt consumption. Again, he came across something striking: an inexplicable 28-day rhythm in the amount of sodium the bodies of the crew retained that didn’t seem to be linked to the amount of urine they produced. What should have happened was a predictable rise and fall of the sodium level in line with the volume of urine. Instead, the sodium seemed to be retained in the body.

Crew members try out their spacesuits during a simulated mission to Mars at the Russian Academy of Sciences’ Institute of Biomedical Problems (IBMP) in Moscow. Their training included a controlled feeding study led by Vanderbilt University’s Jens Titze, M.D., to measure the long-term effects of a high-salt diet. (Photo courtesy of the IBMP and the German Aerospace Center)
Crew members try out their spacesuits during a simulated mission to Mars at the Russian Academy of Sciences’ Institute of Biomedical Problems (IBMP) in Moscow. Their training included a controlled feeding study led by Vanderbilt University’s Jens Titze, M.D., to measure the long-term effects of a high-salt diet. (Photo courtesy of the IBMP and the German Aerospace Center)

A decade later, between 2009 and 2011, his team studied four men during a 105-day pre-flight phase and six others during the first 205 days of a 520-day phase that simulated a full-length manned mission to Mars and back. In the 105-day simulation, the cosmonauts ate a diet consisting of 12 grams of salt daily, which was gradually cut down to nine grams daily, then six grams daily, each over a period of 28 days. In the 520-day simulation, the cosmonauts ate an additional cycle of 12 grams of salt daily. This time, the researchers were careful to measure every crumb of food the crew ate and measured daily urine to the last drop.

RelatedPosts

830-million-year-old microorganisms found trapped in rock salt could still be alive
Dwarf planet Ceres is an ocean world with liquid water beneath the surface
Scientists find the last vestiges of Martian surface water
High salt intake doubles the risk of heart failure

Again the seemingly erroneous pattern in urine volumes persisted but the other markers seem to follow the textbook: eating more salt led to more salt excretion; the amount of sodium in the blood stayed constant and the volume of urine increased.

But then, on a closer look at fluid intake, there was the real shocker: the more salt the crew consumed, the less water they drank. Additionally, the crew complained they were always hungry on the high-salt diet though the meals matched each crew members nutritious needs exactly. The ‘hunger games’ were gone on the low-salt diet.

When Titze’s team experimented with mice on salt diets, he found the animals drank less water the more salt was introduced into their diets.

The only sensible explanation is the body compensated by producing water when salt intake creased. The human body isn’t a fountain or spring but we do retain a lot of water in our tissue. Salt triggers the production of glucocorticoid hormones which influence metabolism and immune function. When the hormones were in high concentration, these break down fat and muscle in the body to free up water. Of course, this comes at a cost: energy, which explains why the mice on a high-salt diet ate 25 percent more food.

Of course, doctors have always known that a body deprived of water will source it from the body itself by breaking it down from the tissue. Much in the same way, a camel traveling through the desert that has no water will break down the fat in its hump. But the fact that this happens from salt intake alone is a huge revelation.

By this point, you might call this ‘fake news’ seeing how we all know chips or pretzels make us very thirsty. In reality,  Dr. Mark Zeidel, a nephrologist at Harvard Medical School who wrote an editorial accompanying the published paper, says we get thirsty because salt-detecting neurons in the mouth stimulate an urge to drink. This urge might have nothing to do with the body’s actual need for water.

In light of these recent findings, a high-salt diet might make people vulnerable to diabetes, obesity, osteoporosis, and cardiovascular disease, all conditions linked to high glucocorticoid levels.

“We have always focused on the role of salt in arterial hypertension. Our findings suggest that there is much more to know — a high salt intake may predispose to metabolic syndrome,” Titze said in a statement.

Whatever’s the case the findings published in The Journal of Clinical Investigation topple many established notions about how sodium interacts with the human body. The consequences could be far reaching and, as is always the case with controversial research, the results will have to be replicated before academics are ready to accept them.

Tags: salt

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Why Your Pasta Pot Always Has That Strange Salt Ring Inside

byTibi Puiu
6 months ago
Image via Imgur.
GeoPicture

Perfectly Cubic Salt Crystals at Salar de Uyuni, Bolivia

byMihai Andrei
12 months ago
Biology

830-million-year-old microorganisms found trapped in rock salt could still be alive

byTibi Puiu
3 years ago
Image via Pixabay.
Environment

Humanity is making everything saltier around us, and it’s hurting the environment (and our infrastructure)

byAlexandru Micu
4 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.