ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

NASA finds first direct proof that Ozone hole is recovering following chemical ban

Sometimes, international collaboration can do wonders!

Tibi PuiubyTibi Puiu
January 4, 2018
in Climate, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Ozone pollution is causing billions worth of damage to East Asian crops
Atmospheric readings show someone is producing illegal, ozone-depleting industrial gases
Human activity is destroying the ozone layer — again
Antarctic ozone hole at its smallest recorded size ever
Credit: NASA.

Almost 30 years ago, a UN emergency panel banned the use of chlorofluorocarbons (CFCs) under the Montreal Protocol. Scientists had learned that these chlorine-containing chemicals had triggered the formation of a gaping hole in the ozone layer right above Antartica. Since then, the ozone layer has clearly recovered, marking a great success — one of the few but highly commendable episodes where nearly all the world’s countries chose to set aside their differences and work for the common good of the planet and all life that call it home. Now, NASA scientists report that they have the first direct evidence that the ozone hole above the icy continent is clearly getting plugged.

Susan Strahan and colleagues at NASA’s Goddard Space Flight Center in Greenbelt, Maryland analyzed data from the Microwave Limb Sounder (MLS) aboard the Aura satellite, which has been taking measurements around the globe since 2004. Unlike other satellite instruments that rely on sunlight that bounces off molecules to measure atmospheric trace gases, MLS employs microwaves emissions that can identify and count trace gases even during the dark southern winter. During this season, the stratospheric weather is quieter and temperatures are low and stable.

“During this period, Antarctic temperatures are always very low, so the rate of ozone destruction depends mostly on how much chlorine there is,” Strahan said. “This is when we want to measure ozone loss.”

The hole in the ozone layer is getting smaller and smaller. Credit: ECMWF.
The hole in the ozone layer is getting smaller and smaller. Credit: ECMWF.

At ground level, ozone or smog is a poisonous chemical often expelled by vehicle exhaust. High up in the stratosphere, ozone builds up at altitudes between 10 and 50 km where it acts as a shield against the harmful ultraviolet rays, which can cause cancer. Ozone holes occur naturally from cooling, but man-made chemicals greatly accelerate their formation. Chlorine, in particular, is very harmful since these atoms are extremely reactive with ozone. Currently, the ozone hole above Antarctica is the size of North America, which sounds humongous. However, it’s also the smallest it’s been since 1988, according to NASA.

After CFCs were banned, scientists eventually observed that the ozone layer started recovering. Previously, such research argued that ozone depletion is decreasing based on statistical analyses of changes in the ozone hole’s size. Now, Strahan and colleagues report not only the first direct measurements that prove ozone depletion is decreasing but also that the decrease is caused by fewer CFCs in the atmosphere.

The findings are based on yearly MLS measurements conducted between 2005 and 2016. These readings suggest that the ban on CFCs has resulted in about 20 percent less ozone depletion during the Antarctic winter than there was in 2005. On average, chlorine levels are declining by about 0.8 percent annually, the authors reported in the Geophysical Research Letters. 

“This is very close to what our model predicts we should see for this amount of chlorine decline,” Strahan said. “This gives us confidence that the decrease in ozone depletion through mid-September shown by MLS data is due to declining levels of chlorine coming from CFCs. But we’re not yet seeing a clear decrease in the size of the ozone hole because that’s controlled mainly by temperature after mid-September, which varies a lot from year to year.”

Complete recovery will take decades, however. What’s more, this recovery is delayed by other ozone-burning chemicals like dichloromethane and 1,2-dichloroethane (heavily used in PVC manufacturing in China). According to scientists, the average date for ozone recovery, now set to 2050, could be delayed by 20-30 years, “depending on future emissions of things like dichloromethane.”

Tags: cfcozone

Share55TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Climate

This researcher says there’s a massive ozone hole over the tropics – but not everyone is convinced

byFermin Koop
3 years ago
Agriculture

Ozone pollution is causing billions worth of damage to East Asian crops

byFermin Koop
3 years ago
Environment

This year’s ozone hole was “quite large”, says monitoring body

byAlexandru Micu
5 years ago
Chemistry

Antarctic ozone hole at its smallest recorded size ever

byAlexandru Micu
6 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.