ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Needle-free COVID-19 vaccine proves to be promising alternative to jabs

It can be self-administered by anyone, which would make it ideal as a 'booster' shot patients can pick up from local pharmacies.

Tibi PuiubyTibi Puiu
November 1, 2021
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
The high-density microarray patch (HD-MAP). Credit: University of Queensland.

Researchers in Australia have developed a needle-free COVID-19 vaccine in the form of a patch that slowly delivers the serum through the skin. This type of vaccine delivery is not only painless, but studies on mice also showed that the generated immune response against the coronavirus was actually stronger than the jab.

The high-density microarray patch (HD-MAP) is the result of a collaboration between Brisbane-based biotechnology company Vaxxas and the University of Queensland. The patch doesn’t deliver an mRNA serum, like the popular Pfizer/BioNTech and Moderna. Instead, it was tested on a more affordable vaccine candidate developed by the University of Texas, called Hexapro.

The Hexapro vaccine uses a stabilized version of the spike protein from the surface of the coronavirus to train the human immune system to recognize and fight infection when the real virus is encountered. The manufacturing process is virtually the same as that for the flu vaccine. The serum is made in eggs and can be stored at a standard refrigerator temperature of 2 to 8 degrees Celsius, making the shot affordable and accessible to virtually all parts of the globe. Hexapro is currently undergoing clinical trials in Vietnam, Thailand, and Brazil.

Dr. David Muller of the University of Queensland’s Chemistry and Molecular Biosciences department wanted to take this vaccine to the next level. He and colleagues have developed HD-MAP, which they think could be a “game-changer for vaccine delivery in a pandemic setting.”

Tests on mice showed that the fingertip-sized patch produced strong immune responses that were effective at protecting the mice from infection with the virus that causes COVID-19. This includes the highly-contagious and more dangerous UK and South Africa variants.

Using patches instead of needle delivery possesses several significant advantages. Once the patch is applied on the patient’s shoulder or some other body part, more than 5,000 microscopic projections deliver the serum into the skin. The application of the patch does not cause pain or any kind of discomfort, unlike vaccine needles which many people abhor. It’s easy to use, which means there’s no need for highly trained medical staff and patients could perform the vaccination themselves.

When the patches are dry-coated, they remain stable for at least a month at 25 degrees Celsius and one week at 40 degrees Celsius. That’s mighty useful in settings where the cold storage infrastructure is lacking. Healthcare workers can take millions of these patches and then have enough time to distribute them across rural and remote areas that may be lacking electricity or mobile cold storage units.

RelatedPosts

NASA continues with normal schedule despite coronavirus
It’s time to start considering wearing face masks — even if you don’t like it
Scientists identify specific cell types targeted by the coronavirus
Scientists develop an anti-coronavirus surface coating

Furthermore, the study’s findings suggest that the patch delivery produces a stronger immune response than the needle-based one.

Dr. David Muller holding the vaccine patch in its packaging. Credit: University of Queensland.

“Traditional intramuscular injection goes deep into the muscle where there aren’t a lot of immune cells. Using the patch, we are able to precisely target the layers of the skin which have a high density of immune cells. This results in a lot more efficient vaccine uptake and corresponding immune response. This vaccine works by targeting the body’s immune response (antibodies) to the spike protein on the surface of the virus. In simple terms, we are dry coating the spike protein onto thousands of tiny projections 250 µm in length. This coated vaccine patch is applied to the skin which deposits the vaccine into the dermal layers of the skin which are rich in immune cells. This precise delivery of the vaccine to the immune cells results in a very strong immune response to SARS-CoV-2,” Dr. Muller told ZME Science.

What remains now is to validate these findings in humans. The researchers are planning a phase I clinical trial for the patch in the second quarter of 2022.

“This will initially be designed around ‘booster’ dosing,” Dr. Muller said.

Findings appeared in the journal Science Advances.

Tags: coronavirusCOVID-19covid-19 vaccine

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Diseases

That 2022 Hepatitis Outbreak in Kids? It Was Apparently COVID

byMihai Andrei
2 months ago
Genetics

Finally, mRNA vaccines against cancer are starting to become a reality

byMihai Andrei
3 months ago
Diseases

FLiRT and FLuQE, the new COVID variants making the rounds

byMihai Andrei
11 months ago
Diseases

Moderna’s flu + Covid jab produces “higher immune response” than two separate shots

byMihai Andrei
1 year ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.