ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Mouse eggs engineered entirely in the lab for the first time — later lead to healthy adults

Everyone says this is a massive breakthrough in biology.

Tibi PuiubyTibi Puiu
October 18, 2016
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Mouse pups born from eggs released by lab-grown ovaries. Credit: O. Hikabe et. al.
Mouse pups born from eggs released by lab-grown ovaries. Credit: O. Hikabe et. al.

A paper that has been met by everyone in the field with cheerful enthusiasm describes how the authors grew mice eggs from the ground up, starting from stem cells. The eggs were then fertilized with sperm and implanted in foster mothers. Though the success rate was less than 1%, some of the embryos grew into healthy pups and later into adults with no sign of dysfunctionality. The implications for fertility, but also the prospect of designer babies, are staggering.

From cell to egg to living mammal

The landmark procedure was performed by Katsuhiko Hayashi and colleagues at Kyoto University in Japan and took a decade to shape. At first, they started by coaxing pluripotent stem cells — cells that resemble stem cells and which theoretically can differentiate into any kind of cell in the body — to turn into egg and sperm cells.

In 2012, the Japanese researchers showed they could make fertile eggs from both mouse embryonic stem (ES) cells and induced pluripotent stem cells (iPS). While these iPSCs are similar to embryonic stem cells, the key difference is that they can be made from any cells from the host, like the skin. Pluripotency implies the capacity for stem cells to become a number of different cell types, but that does not necessarily provide the ability to develop an entire organism.

The discovery of induced pluripotent cells is one of the most important breakthroughs in biology because it means that you can now grow an entire liver or kidney that is biocompatible with the patient. In this case, the donor is the patient himself and millions of lives could be saved in the future once scientists get the knack of growing whole, functioning organs in the dish.

But going back to our mice and eggs, it was only this summer that Hayashi and colleagues fitted one of the last pieces of their jigsaw puzzle when they grew mouse ovaries in the lab, then used them to produce fertile eggs.

In total, around 50 eggs were produced, granted many presented chromosomal abnormalities. Still, 75% of the eggs had the correct number of chromosomes and these were mixed with sperm to produce 300-celled embryos.

The embryos were then implanted into foster mothers, but only 11 or 3% grew into full-term pups compared to 62%, in the case of eggs taken from adult mice and fertilized in vitro. The pups that did survive, though, grew into functioning adults.

RelatedPosts

First chimera monkeys presented by scientists
Deep-sea marine animals lay eggs near hydrothermal vents so they hatch faster
Researchers grow teeth-like structure using stem cells from urine
Sugar-coated scaffolding guides and differentiates stem cells

“This is truly amazing,” says Jacob Hanna, a stem cell biologist at the Weizmann Institute of Science in Rehovot, Israel.  “To be able to make robust and functional mouse oocytes over and over again entirely in a dish, and see the entire process without the ‘black box’ of having to do any of the steps in host animals, is most exciting.”

“Parts of this work were done before — here they are put together in completeness. It’s impressive that they got pups that way,” says Dieter Egli, a stem cell biologist at the New York Stem Cell Foundation Research Institute.

The low success rate means we won’t be seeing human babies born this way anytime soon, but the paper demonstrated a way for infertile women to have their own babies. Another more ethically challenged pathway is that we could one day use this method to make designer babies starting from nothing but a few skin cells, with specific genetic alterations using a tool such as CRISPR-CAS9.

Both scenarios are very far away from becoming reality. The possibilities they entertain can only boggle the mind, though.

Tags: egglabstem cells

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Neurology

Japan’s Stem Cell Scientists Claim Breakthrough in Parkinson’s Treatment

byMihai Andrei
4 days ago
Animals

Humans are really bad at healing. But that also helped us survive

byTudor Tarita
2 weeks ago
News

What’s the best way to peel a boiled egg? A food scientist explains

byPaulomi (Polly) Burey
3 weeks ago
Health

“I can eat sugar now”: Stem Cells Reverse Woman’s Type 1 Diabetes in Medical First. Is a Cure Finally In Sight?

byTibi Puiu
8 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.