ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Motors developed for space station drive self-charging prosthetic leg

The leg regenerates the battery every time it touches the ground. It's also much quieter than existing prosthethics.

Tibi PuiubyTibi Puiu
July 28, 2020
in News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: University of Michigan.

Mechanical engineers at the University of Michigan have repurposed small motors originally designed for the International Space Station (ISS) into a high-tech prosthetic leg that mimics natural biomechanics. The bionic limb offers a more natural gait and is quiter than previous prosthetics.

When using a conventional leg prosthetic, amputees have to raise their hips in order to lift the artificial limb from the ground and swing it forward. Such a movement is unnatural and expends more energy than conventional walking. In time, this puts extra stress on the hips and lower back and can eventually turn into joint damage or, at the very least, is unpleasant for the wearer.

Custom 3D printing techniques, such as those promoted by organizations like Tej Kohli’s charity and Open Bionics, can produce prosthetics that mold to the amputees’ residual limbs in a more natural fashion. But even so, they’re still limited in terms of providing more natural movements.

This is where robotic legs come in, which provide a more comfortable gait. However, their main drawback has always been joint stiffness.

“We designed our joints to be as compliant, or flexible, as possible,” said Toby Elery of the University of Michigan and first author of the study. “Our robotic leg can perform and even react like a human joint would, enabling a naturally free-swinging knee and shock absorption when contacting the ground.”

Elery and colleagues employed small but powerful motors originally designed for a robotic arm on the ISS in a streamlined prosthetic limb design that offers a free-swinging knee and regenerative braking.

The motor uses fewer gears than conventional designs. Credit: University of Michigan.

Like electric vehicles, the prosthetic limb charges the battery every time the it ‘hits the breaks’ — in this case, energy is captured every time the foot hits the ground. This enables users to almost double their walking time on a single charge per day.

“Our prosthetic leg consumes approximately half the battery power of state-of-art robotic legs, yet can produce more force,” said Robert Gregg, an associate professor of electrical and computer engineering at the University of Michigan.

“If the joints are stiff or rigid, the force is transferred to the residual limb, and that can be painful,” Gregg said. “Instead, we use that force to charge the battery.”

One of the space station motors powers the knee while another powers the ankle. Unlike previous robotic prosthethics, this arrangement uses fewer gears, thereby greatly reducing the noise from the scale of a vacuum cleaner to a refrigerator.

RelatedPosts

“Space Janitor” satellite announced to clean-up space debris
First private mission to the ISS gets green light from NASA
Astronauts identify microbes in space for the first time
Astronauts spot Texas wildfires from the ISS

Amputees who have tested the prosthethic claim that they can genuinely feel the artificial leg helping them push off the ground as they walk.

“In some cases, they have observed that they feel like muscles in their hips and back are working less with our leg, compared to their conventional leg,” Gregg said. “We’re able to reduce compensations at the hips.”

In the future, the researchers plan on improving the control algorithms so that the prosthetic can adapt to different terrains, changes in pace, and physical activities.

The findings were reported in the journal IEEE Transactions on Robotics.

Tags: International Space Stationprosthethic leg

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronauts Who Spent 286 Extra Days in Space Earned No Overtime. But They Did Get a $5 a Day “Incidentals” Allowance

byTibi Puiu
3 months ago
Future

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

byMihai Andrei
3 months ago
????????????????????????
News

The International Space Station Might Be “Too Clean” for Astronauts’ Own Good

byJordan Strickler
3 months ago
GMT029_06_47_Don Pettit_OST FWD dragon
Great Pics

An Astronaut Just Captured a Jaw-Dropping Photo of Earth and the Milky Way from Space

byTibi Puiu
4 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.