ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Mars may have had planetary rings billions of years ago — and might get a new one

A tiny Martian moon suggests Mars may have had planetary rings.

Tibi PuiubyTibi Puiu
June 4, 2020
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist impression of Mars with a ring. Credit: Celestia.

Astronomers have recently proposed an intriguing hypothesis: Mars may have had planetary rings formed by the crumbling remnants of one of its ancient moons, now long gone. The same ancient moon may have seeded the Red Planet’s sole surviving pair of moons: Phobos and Deimos.

Put a ring on it

Don’t be jealous of Mars. While it has two moons (unlike Earth, which has only one), these are tiny and not that much to look at. Phobos, whose name comes from the Greek phobia (fear), is just 22.7-km across while Deimos, which in Greek mythology is the twin brother of Phobos and personified terror, measures a measly 12.6-km in a diameter. So much for the fear factor.

Due to their small size, astronomers used to believe for a long time that Phobos and Deimos were actually wandering asteroids that were captured by Mars’ gravity. However, subsequent observations showed that their obits are almost in the same plane as the Red Planet’s equator, meaning the moons must have formed at the same time as Mars.

It is this ‘almost’ that has been bugging scientists for quite some time, leading Matija Ćuk, a research scientist at the SETI Institute, to formulate a wild hypothesis.

For Ćuk, what’s really intriguing about these puny moons is not their size, but rather their orbital motion. Phobos orbits just 9.377 kilometers above the Martian surface, circling the planet three times in a single Earthling day. And, with each orbit, Phobos is drawing nearer to Mars, tugged by the planet’s overwhelming force of gravity.

In 2017, Ćuk, along with David Minton, a professor at Purdue University, and then-graduate student Andrew Hesselbrock, published a paper suggesting that Phobos will eventually get pulled apart by Mars’ gravity, spewing debris that will go on to form a ring around the planet. This wouldn’t be the first time either.

The researchers’ models suggest that over the course of Mars’ geological history, many Martian moons were destroyed in this manner, and each time a new, smaller moon would form. This ring-moon cycle repeats over and over again.

RelatedPosts

Russia gives up on Phobos failed mission, scientist apologizes
Earth bacteria can withstand extremely harsh Mars-like conditions
New global mosaic of the Red Planet reveals Mars in mesmerizing detail
This strange rock on Mars is forcing us to rethink the Red Planet’s history

In their most recent study, which was presented at the 236th Meeting of the American Astronomical Society, held virtually on June 1-3, 2020 due to COVID-19 concerns, Ćuk and colleagues provide new insights to support their ring-moon formation theory.

This time, their thesis centers on Deimos, the smallest and most distant of the two Martian moons. What’s odd about Deimos is that its orbit is tilted by two degrees.

“The fact that Deimos’s orbit is not exactly in plane with Mars’s equator was considered unimportant, and nobody cared to try to explain it,” Ćuk said in a statement.

“But once we had a big new idea and we looked at it with new eyes, Deimos’s orbital tilt revealed its big secret.”

Mars’ outermost moon Deimos. Credit: SETI.

The researchers claim that Deimos’ tilt can only be explained by the existence of a ‘grandparent’ moon, roughly 20 times larger than Phobos. This ancient moon, thought to have existed 3 billion years ago, likely broke up and reformed twice, creating Phobos in the process the second time around. Each time it broke, the grand-moon also produced planetary rings.

The grandchildren of this sizable, long-gone moon would have migrated outwards, pushed by a planetary ring, strongly affecting Deimos’ orbit in the process.

Deimos is thought to be billions of years old, while Phobos is much younger, having formed just 200 million years ago, during the time of the dinosaurs. Their timeline fits well with the researchers’ ring-moon cycle theory.

All of this implies a striking image: billions of years ago, Mars may have had a prominent ring.

But as intellectually fascinating this might sound, there is little evidence to support the researchers’ assertions. Their theory might be put to the test when JAXA, the Japanese space agency, lands a spacecraft on Phobos, a mission slated for 2024. The spacecraft will touch down with the Martian moon, collect samples, and return them back to Earth for analysis. Inside these samples, scientists hope to find telltale clues about Mars’ past.

 “I do theoretical calculations for a living, and they are good, but getting them tested against the real world now and then is even better,” Ćuk hopefully remarked.

Tags: Marsred planet

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Geology

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

byKimberly M. S. Cartier
2 days ago
News

Terraforming Mars Might Actually Work and Scientists Now Have a Plan to Try It

byTibi Puiu
1 week ago
News

A Decade After The Martian, Hollywood’s Mars Timeline Is Falling Apart

byAri Koeppel
3 weeks ago
News

NASA’s Curiosity Rover Spotted Driving Across Mars From Space for the First Time

byTibi Puiu
2 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.