ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Light’s Mach-cone, its ‘sonic boom’ equivalent, filmed for the first time

It makes less of a racket though.

Tibi PuiubyTibi Puiu
January 23, 2017 - Updated on January 24, 2017
in News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

LHC physicists make matter out of light
Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space
Faster than light Neutrinos FINALLY and OFFICIALLY debunked
Spacecraft that sails on sunlight actually works
A fighter jet photographed in the midst of a sonic boom. The plane travels faster than the sound it emits. As it pieces the sound wave, a roaring boom commences. Credit: YouTube capture.
A fighter jet photographed in the midst of a sonic boom. The plane travels faster than the sound it emits. As it pierces the sound wave, a roaring boom commences. Credit: YouTube capture.

Though modern fighter jets are stealthier than ever, they’re hardly inconspicuous once accelerating past the sound barrier. By reaching Mach speeds (faster than 340 meters/second), jets essentially travel faster than sound pressure waves. When the jet crashes into the pressure wave it had just emitted, a nearly deafening ‘sonic boom’ is triggered that can be heard for miles. Though far less spectacular, the same thing essentially also happens with light when it travels faster than the wave it emitted. Now, using the most advanced ultra-speed cameras, scientists have filmed light’s Mach cone for the first time.

Per Einstein’s Theory of Special Relativity, nothing can travel faster than light. But that doesn’t mean light can’t travel slower than c (300,000 kilometers/second). In fact, scientists have previously shown its possible to slow down light to 0.001 percent of c, making it almost look like it’s floating.

Illustration of a photonic boom. Credit: Jinyang Liang and Lihong V. Wang.
Illustration of a photonic boom. Credit: Jinyang Liang and Lihong V. Wang.

The experiment carried out by a team at Washington University was far less extreme and involved the basic knowledge that photons travel slower through some mediums than others. In between two plates made of silicone rubber and powdered aluminum oxide respectively, the researchers sandwiched dry-ice fog. Light was then fired through a channel that pierced the two plates.

light-boom
Credit: Jinyang Liang

This technique enabled the researchers to witness a photonic boom for the first time in video because the light moves slower through the walls of the tunnel than the fog. The footage we’re seen was recorded with a camera that films at a trillion frames per second. The same camera has been previously used to film light in slow motion, providing a unique glimpse into how rays of light actually look like. 

The Washington University team claims the technique they just demonstrated might prove useful for imaging ultrafast events, even those in the human body.

“Our camera is fast enough to watch neurons fire and image live traffic in the brain,” optical engineer Jinyang Liang from Washington University told Live Science.

“We hope we can use our system to study neural networks to understand how the brain works.”

Tags: photonic boomphotons

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space

byTibi Puiu
1 month ago
Future

Ultra-thin night vision filter could make bulky goggles a thing of the past

byTibi Puiu
1 year ago
News

LHC physicists make matter out of light

byTibi Puiu
5 years ago
Image taken during the LightSail 2 sail deployment sequence on 23 July 2019. Credit: The Planetary Society.
News

Spacecraft that sails on sunlight actually works

byTibi Puiu
6 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.