ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

New LHC results could be a back-breaker for the Standard Model of Physics

We can't call it a major discovery. Not yet.

Mihai AndreibyMihai Andrei
March 10, 2016 - Updated on May 14, 2021
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Large Hadron Collider creates mini big bangs and incredible heat
New Particles Found at Large Hadron Collider
Two new subatomic particles discovered at CERN, as predicted by Standard Model
What Does the Large Hadron Collider Upgrade Mean for Physics?

We can’t call it a major discovery. Not yet. However, there are some indications that researchers working at the Large Hadron Collider (LHC) have discovered something beyond our current understanding of Physics – something that’s outside the Standard Model.

“To put it in terms of the cinema, where we once only had a few leaked scenes from an much-anticipated blockbuster, the LHC has finally treated fans to the first real trailer,” says Prof. Mariusz Witek (IFJ PAN), one of the members of the team that made the discovery.

Image via CERN.

The LHC is the world’s largest and most powerful particle collider, the largest, most complex experimental facility ever built and the single largest machine in the world. With it, physicists hope to uncover some of the most daunting secrets of the Universe and to better understand the sub-atomic particle world, which governs interaction between all types of matter.

The Standard Model is a theory that attempts to classify all the subatomic particles in the world, as well as the interactions between them. So far, everything that the LHC found confirmed the Standard Model, including the famous Higgs Boson – one of the pivotal points of particle physics. But this was bound to happen at some point. The Standard Model is incomplete, and there are significant gaps in our understanding of physics. Most notably, the model doesn’t account for gravity at all, which leaves a shed load of unanswered questions.

“Up to now all measurements match the predictions of the standard model,” said lead researcher Mariusz Witek, from the Institute of Nuclear Physics of the Polish Academy of Sciences. “However, we know that the standard model cannot explain all the features of the Universe. It doesn’t predict the masses of particles or tell us why fermions are organised in three families. How did the dominance of matter over antimatter in the universe come about? What is dark matter? Those questions remain unanswered.”

The discrepancy deals with  particle called the B meson, a meson composed of a bottom antiquark and either an up, down, strange or charm quark — yes, those are real names and yes, particle physics is strange. The Standard Model predicts very specific decay frequencies and angles, but the theory doesn’t match the observations, so something else is at work.

At this point, it absolutely has to be said that this is not a confirmed discovery. We need more data to be sure that what’s found is for real. However, if it does turn out to be real, it means we may be dealing with a completely new particle. We’re going to have to wait for confirmation, and that may take a while.

“Just like it is with a good movie: everybody wonders what’s going to happen in the end, and nobody wants to wait for it,” says Witek.

Tags: LHCmesonstandard model

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

byTibi Puiu
3 months ago
News

Astronomers Shocked as JWST Uncovers Massive Galaxies That Challenge Gravity Theory. Is Dark Matter Theory Wrong?

byTibi Puiu
9 months ago
News

The Milky Way’s place in the universe just got much bigger: It’s part of a cosmic superstructure beyond our wildest expectations

byTibi Puiu
10 months ago
News

Physicists might have just discovered ‘glueballs’: the particles made entirely of force

byTibi Puiu
1 year ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.