ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Diamond rain of Neptune and Uranus mimicked in the lab by scientists

Yes, on some planets it rains diamonds!

Tibi PuiubyTibi Puiu
August 22, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists fired lasers onto the humble polystyrene to recreate a luxurious sight thought to be common on the farthest-flung planets of the solar system: diamond rain.

Scientists have long throught that high temperature and pressure deep in Neptune and Uranus' atmosphere are enough to form diamond rain. Now, we have lab confirmation of this hypothesis. Credit: Greg Stewart / SLAC National Accelerator Laboratory.
Scientists have long throught that high temperature and pressure deep in Neptune and Uranus’ atmosphere are enough to form diamond rain. Now, we have lab confirmation of this hypothesis. Credit: Greg Stewart / SLAC National Accelerator Laboratory.

The two blue marbles of Neptune and Uranus are the least visited planets in our Solar System. Up until now, the only vehicle that has ever visited Uranus and Neptune was NASA’s Voyager 2, which launched in 1977. This flyby, however, raised more questions than it answered. For instance, these two outermost planets of the solar system are some times referred to as the ‘ice giants’ but the reality is we don’t know that much about what they’re made of. We know both have a solid core, that temperatures and pressure can be very high or that both have a dense atmosphere. We don’t know very specifically what’s inside behind their blue blankets since all the data we have comes from a single flyby mission and Earth-based telescope.

This massive gap in knowledge might hopefully be bridged if a NASA mission to send three orbiters to Uranus and Neptune by 2030s gets the resources it needs. Until then, scientists have to do with what they got.

British researchers, for instance, have mimicked the atmospheric conditions on both planets to test whether a long-standing and curious assumption has any footing. For many years scientists have posited that it rains diamonds on both planets, a hypothesis that has long proved very tricky to confirm in the lab. But now, an international team of scientists led by Dominik Kraus from German research lab Helmholtz-Zentrum Dresden-Rossendorf has finally done it.

A diamond furnace

To achieve their goal, the team fired a high-power laser at polystyrene, a common household material here on Earth but also a complex molecule that mimics the hydrocarbon soup seen in the atmosphere of the ice giants. Inside a treated environment, when the first laser pulse hit the foam, an initial shock wave was ejected. A second shock wave, this time faster, was made by a second pulse. When the two waves met, some very extreme conditions were created: temperatures and pressures of about 5,000 Kelvin and 150 GPa or roughly about as hot as the sun’s surface and one a half million times more pressure than at Earth’s sea level, respectively.

All of this was hot enough to break the bonds between the carbon and hydrogen inside the polystyrene. The pressure was also high enough to cause the carbon to bind together and form diamonds, which the scientists observed in minute molecular detail using very short pulses of X-rays.

Inside the lab, it rained with nanoparticles of diamonds but inside Neptune’s atmosphere, these might be far bigger, the team reported in Nature Astronomy. 

RelatedPosts

Unexpected deep-Earth oxidized iron surprises geologists
Astronomers may have just discovered two new moons around Uranus
30th Neptune: the anniversary of an emblematic photo
New moon discovered orbiting Neptun

Once these diamond drops fall on the planet’s surface, they’ll sink down to the very bottom. This is another reason why this paper is neat. You see, for some time physicists have been debating the structure of both planets. It’s thought that the atmosphere — the outermost layer – is made of hydrogen, helium, and methane, which sits atop a liquid hydrogen layer including helium and methane. The lowest layer is liquid hydrogen compounds, oxygen, and nitrogen, while the core is thought to be made of ice and rock. Now, these little diamonds will help other scientists better test and piece together what these planets’ structure looks like.

“These diamonds will sink down because they are heavier than the surrounding medium and when they sink down there will be friction with the surrounding medium, and at some point they will be stopped when they reach the core – and all this generates heat,” Kraus told The Guardian. 

There might also be a practical dimension to the team’s findings. Kraus says that the market is in demand for artificial diamonds and some applications require finely sized ones — sounds like a perfect fit to me, though it remains to be seen whether it will also be economically feasible.

In any event, it’s amazing to not only hear about how it might rain freaking diamonds on an alien planet but also get a chance to experiment and prove it could happen.

Tags: diamondneptuneuranus

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Astronomy

Uranus Is Hotter than We Thought and Probably Deserves a Visit

byMihai Andrei
3 weeks ago
Chemistry

Scientists Grow Diamonds at Atmospheric Pressure in Liquid Metal and It’s a Game Changer

byTibi Puiu
6 months ago
Future

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

byTibi Puiu
6 months ago
Geology

Massive 2,492-Carat Diamond Unearthed in Botswana, Second Largest in History

byTibi Puiu
12 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.