ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Black holes turn stars into spaghetti, devours them, then burp fire

If there's one thing that black holes do extremely well, it's drawing things to them and destroying them.

Mihai AndreibyMihai Andrei
September 19, 2016
in Astronomy, Astrophysics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

The constellation Vela explodes with color (and new suns) in ESO-captured snaps
Astronomers witness light produced by the merger of two black holes for first time
Planets could orbit Supermassive Black Holes
Galaxy is full of starless Jupiter-like planets

If there’s one thing that black holes do extremely well, it’s drawing things to them and destroying them. Their gargantuan gravitational attraction can tear everything apart – even stars, which they stretch and compress like spaghetti. Now, a new study reports that black holes “burp” after they consume a star.

This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole in a tidal disruption flare. Image credit: NASA/JPL-Caltech

When a black hole devours a star, it’s called “stellar tidal disruption.” The phenomenon occurs when the star gets too close to the black hole and falls under its influence, being torn apart by tidal forces pulling in different directions. During the process, stars are spaghettified – yes, this is an actual astronomic term also called the noodle effect. During spaghettification, stars are stretched and compressed into long thin shapes (kind of like spaghetti).

Now, as the black hole destroys the star, a huge flare is emitted releasing enormous amounts of energy. This has been observed several times in recent years, but we don’t understand the process all too well. Now, two new studies provide some vital information about stellar tidal disruption. Using NASA’s Wide-field Infrared Survey Explorer (WISE), the studies analyze flares by studying how surrounding dust absorbs and re-emits their light like echoes. This allowed them to quantify the energy of the flares better than ever before.

“This is the first time we have clearly seen the infrared light echoes from multiple tidal disruption events,” said Sjoert van Velzen, postdoctoral fellow at Johns Hopkins University, Baltimore, and lead author of a study finding three such events, to be published in the Astrophysical Journal. A fourth potential light echo based on WISE data has been reported by an independent study led by Ning Jiang, a postdoctoral researcher at the University of Science and Technology of China.

The flares emit a huge amount of energy in a broad range of frequencies including ultraviolet and X-ray light. This energy pulverizes any existing dust around the black hole. By seeing how much of the dust is pulverized, we can make deductions about the energy and nature of the process.

“Our study confirms that the dust is there, and that we can use it to determine how much energy was generated in the destruction of the star,” said Varoujan Gorjian, an astronomer at NASA’s Jet Propulsion Laboratory, Pasadena, California, and co-author of the paper led by van Velzen.

Understanding these flares is important because many astronomers believe that they actually give birth to new stars and help solidify the shape of galaxies. According to our understanding, this is a process which happened very often in the early stages of the Universe, 14 billion years ago.

Tags: Black holesstar

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Supermassive black holes are found at the center of galaxies, chomping on gas and dust that gets pulled into their strong gravitational field. They are surrounded by a hot, swirling accretion disk of material.
Astronomy

A Huge, Lazy Black Hole Is Redefining the Early Universe

byJordan Strickler
6 months ago
News

Astronomers Just Mapped the ‘Invisible’ Corona of Black Holes — Here’s Why It Matters

byTibi Puiu
7 months ago
Astrophysics

Astrophysicists are stunned to see a black hole “burping” several years after having a meal

byAlexandru Micu
3 years ago
News

Almost two billion stars: Largest, most detailed star catalog to date revealed

byMihai Andrei
3 years ago

Recent news

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.