ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Axons Look Like “Pearls on a String” in Discovery That Could Rewrite Biology

We thought we knew what neurons looked like. Guess again.

Tibi PuiubyTibi Puiu
December 5, 2024
in Mind & Brain, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Micrograph image of the “pearling” structure of an axon. Credit: Quan Gan, Mitsuo Suga, Shigeki Watanabe

For more than a century, axons — the slender arms of brain cells — have been depicted as uniform tubes. These structures are responsible for transmitting information across neurons. But new research suggests the truth may be far more intricate, potentially rewriting biology textbooks.

Scientists at Johns Hopkins Medicine, led by Dr. Shigeki Watanabe, have found that axons aren’t the smooth, cylindrical cables we imagined. Instead, they more closely resemble “pearls on a string,” with a bubbly, variegated surface. “These findings challenge a century of understanding about axon structure,” Watanabe says.

The implications are vast. Axons, as Watanabe explains, are the brain’s communication highways, enabling everything from memory to learning. Their shape affects how signals move through the brain. This new understanding could provide insights into both normal brain activity and neurodegenerative conditions like Parkinson’s disease.

A Pearl-Like Arm

Standard diagram of a human neuron including its cell body and axon
Anatomy of a typical human neuron (axon, synapse, dendrite, mitochondrion, myelin sheath, node Ranvier and Schwann cell). Credit: Queensland Brain Institute.

Watanabe’s curiosity about axon structure was sparked years ago during his research on worms. Pearl-like patterns in axons appeared repeatedly, leading to a question: Could this be a universal feature, rather than a sign of damage or disease? Collaborating with Swiss scientist Dr. Graham Knott and theoretical biophysicist Dr. Padmini Rangamani, Watanabe set out to test the idea.

The team used high-pressure freezing electron microscopy to preserve and observe axons in their natural state. Unlike traditional methods, which can distort cells, this technique freezes neurons rapidly, keeping their structure intact — like preserving a grape instead of dehydrating it into a raisin.

The researchers examined neurons from lab-grown samples, adult mice, and mouse embryos. Across tens of thousands of images, they found the same pearl-like structures, each measuring about 200 nanometers in diameter. These pearls are linked by thinner segments roughly 60 nanometers wide. These were not the previously known synaptic varicosities, where neurotransmitters are stored, but something entirely new. They named them “non-synaptic varicosities.”

But what causes this pearl-like shape? Using mathematical models, the team found that axonal membranes and their physical properties play a major role. Stiffer membranes, influenced by cholesterol levels, promoted pearling. Removing cholesterol made the membranes more fluid, reducing the pearl structures and slowing electrical signaling.

RelatedPosts

Brain neurons can remodel connections, MIT shows
We can’t grow new neurons in adulthood after all, new study says
Scientists link properties of individual brain cell size to intelligence
Bacteria can make you happier AND smarter

Redefining Brain Architecture

These structural changes affect how axons function. When the researchers stimulated neurons electrically, the pearls swelled slightly, and electrical signals sped up. But when cholesterol was removed, the pearls lost their swollen state, and signal speed returned to normal. This suggests that axonal morphology may play a role in how the brain processes and adapts to information over time.

“A wider space in the axons allows ions [chemical particles] to pass through more quickly and avoid traffic jams,” Watanabe explains. In other words, there’s an intimate link between the axon’s structure and function in the brain.

What does this mean for us? The team plans to examine axons in human brain tissue, focusing on samples from individuals with neurodegenerative diseases. They hope this work will reveal whether these pearl-like axons contribute to the pathology of conditions like Parkinson’s or Alzheimer’s.

The bubbly axons identified by Watanabe and his colleagues challenge long-held assumptions — but also open the door to new questions. How do these structures form? Do they help protect against disease — or exacerbate it? And what do they reveal about the brain’s ability to adapt and evolve?

As researchers continue to probe the mysteries of the brain, this study reminds us that even the smallest details — down to the nanometer — can reshape our understanding of how we think, feel, and adapt.

The findings appeared in the journal Nature Neuroscience on Dec. 2.

Tags: axonAxonsBiologyneurobiologyneuron

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Animals

Same-Sex Behavior Is Surprisingly Common in Animals — Humans Are No Exception

byMihai Andrei
2 months ago
Mind & Brain

Scientists Just Built a Mini Human Nervous System That Can Process Pain in a Dish in World First

byTibi Puiu
2 months ago
Biology

Your Skin Can “Taste” Bitter Compounds to Protect Against Toxins

byTibi Puiu
3 months ago
Health

Scientists uncover how your brain flushes out waste during sleep

byTibi Puiu
5 months ago

Recent news

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

June 13, 2025

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.