ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists 3D print human skin with hair follicles

It could transform medical and cosmetic research.

Tibi PuiubyTibi Puiu
November 16, 2023
in Health, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
(A) Schematic of the strategy for printing hair follicle structures within the reconstructed skin models. (B) Live image of representative skin model in culture at day 2.
(A) Schematic of the strategy for printing hair follicle structures within the reconstructed skin models. (B) Live image of representative skin model in culture on day 2. Credit: Science Advances.

What’s the first thing that comes to mind when you think of hair? Most people probably think of hairstyle, color, and other things related to appearance. After all, hair is a significant part of many people’s visual identity, which explains why the hair care industry is so huge. But when biological engineer Pankaj Karande thinks of hair, he’s interested in very different things.

“Beyond what we usually think of when we think of hair, it is also in some ways a mini organ, which is extremely important for healing and maintaining skin health,” says Karande, an associate professor of chemical and biological engineering at the Rensselaer Polytechnic Institute in New York.

Recently, Karande and his team 3D printed hair follicles within lab-grown human skin tissue. It’s an unprecedented development that could transform many fields.  Lab-grown skin can help us find treatments for diseases, heal wounds, spare animals from cosmetic testing, and perhaps even design “leather” that emulates the look and feel of real animal hides.

The promise of lab-grown skin

Although it looks rather simple on the surface, skin is perhaps one of the most difficult organs to engineer in the lab. It’s made of multiple types of cells over multiple layers of tissues. The shape of skin can be complex and with different mechanical properties from place to place. The skin on your back, for instance, behaves differently from that on your face or hands. There are nerve endings that help us interact with the world, relaying sensations of hot and cold, sharp and dull. Blood vessels permeate all layers of the skin, carrying nutrients and waste back and forth, as well as delivering critically essential immune cells when we’re injured.

Imagine recreating this complex jumble of biological features from scratch, starting from just some donor stem cells. It’s tough — but overcoming the huge challenges is worth it. Thousands of patients with 3rd-degree burns would benefit hugely from lab-grown skin for grafting. And there are also countless animals whose skin we use for drug and cosmetics testing to spare people skin from the potential side effects.

But to unlock the full potential of lab-grown skin, the engineering needs to mimic natural skin as closely as possible — hair follicles included.

Hair follicles play crucial roles in thermoregulation, sweat production, and skin healing, thanks to their stem cells. They also act as gateways for topical drugs and cosmetics.

RelatedPosts

We’ve found the genetic key to making red blood cells
3D printing living materials with bioink made entirely from bacteria
Skin impression of one of the last dinosaurs found in Spain
A Forgotten 200-Year-Old Book Bound in a Murderer’s Skin Was Just Found in a Museum Office

For their new study, the Rensselaer researchers first cultivated skin and follicle cells, then used them with proteins to create a bio-ink for the printer. The printer meticulously constructed the skin, embedding channels for the hair cells, which then developed into follicle-like structures. While the current lifespan of these tissues (two to three weeks) limits full hair shaft growth, the team aims to extend this period, enhancing their use in drug testing and for skin grafts.

 3D bioprinted skin models incorporating hair follicles.
3D bioprinted skin models incorporating hair follicles. Credit: Science Advances.

“Our work is a proof-of-concept that hair follicle structures can be created in a highly precise, reproducible way using 3D-bioprinting. This kind of automated process is needed to make future biomanufacturing of skin possible,” Karande, study lead author, said in a press release.

“The reconstruction of hair follicles using human-derived cells has historically been a challenge. Some studies have shown that if these cells are cultured in a three-dimensional environment, they can potentially originate new hair follicles or hair shafts, and our study builds on this work,” Karande said.

As this technology evolves, its potential impact on medicine and pharmacology is both immense and exhilarating.

The findings appeared in the journal Science Advances.

Tags: bioinkhair folliclemedical graftsskin

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Concept image of 3D printed red blood cells.
Biology

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

byRupendra Brahambhatt
3 weeks ago
History

A Forgotten 200-Year-Old Book Bound in a Murderer’s Skin Was Just Found in a Museum Office

byTibi Puiu
2 months ago
Biology

Your Skin Can “Taste” Bitter Compounds to Protect Against Toxins

byTibi Puiu
3 months ago
Health

Scientists Discover RNA, Not DNA, Is Behind the Pain and Redness of Sunburn

byTibi Puiu
5 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.