ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers develop new tool to help regrow burned-down forests

We all need some help every now and then.

Alexandru MicubyAlexandru Micu
December 21, 2020
in Environment, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research at the University of California, Davis with support from U.S. Geological Survey (USGS), Cal Fire, and the U.S. Forest Service aims to understand how forests regenerate after wildfires.

Image via Pixabay.

The team has managed to create a predictive mapping tool that showcases where forests may have trouble regrowing after burning down. This tool can be used to nurture those areas that could have trouble recovering on their own, an especially important task in the wake of the massive wildfires we’ve seen in Australia and the USA this year.

After the flame

“Huge fires are converting forested areas to landscapes devoid of living trees,” said lead author Joseph Stewart, a postdoctoral researcher at UC Davis and with USGS.

“Managers need timely and accurate information on where reforestation efforts are needed most.”

Wildfires might char whole forests down to the ground, but there will always be saplings to start anew — at least, that’s what we like to think. There are, in fact, multiple factors that influence whether, and how fast, a forest can regrow after such an event; understanding what these are and how they interact in the real world can thus help preserve forests even after they have burned down.

The new tool, known as the Post-fire Spatial Conifer Regeneration Prediction Tool (POSCRPT), aims to give forest managers a way of estimating which areas will regrow naturally after a fire, and which are likely to need some help to do so. It produces results within weeks of a fire, too, meaning steps can be taken quickly to prevent long-lasting forest losses.

POSCRPT was developed from data recorded in the USA in the wake of the massive wildfires that swept through California. The team found that conifers (which dominate North America’s forests) are less likely to recover after a fire if seedlings have to face drier conditions. This is especially pronounced in low-lying forests that already experience frequent periods of drought, the team explains.

Fewer conifers are expected to regrow in California’s lower elevation forests due to climate change and its associated drought conditions, the team adds.

“We found that when forest fires are followed by drought, tree seedlings have a harder time, and the forest is less likely to come back,” said Stewart.

The study recorded post-fire recovery data from more than 1,200 study plots in 19 wildfires that burned between 2004 and 2012, and 18 years’ worth of forest seed production data. This was put together with multispectral satellite imagery, forest structure maps, as well as data pertaining to climate and other environmental factors. The end result was a model of how seed availability and forests’ regeneration probabilities vary for different groups of conifers.

RelatedPosts

Forests become more efficient in response to rising CO2 levels
Reforestation efforts bring back hundreds of species to China
Change diets to save the tropical forests, researchers say
What is happening in the Amazon? Key questions and answers

A prototype has been used over the last few years by forest managers, the authors explain — the latest update includes more in-depth information on post-fire climate and seed production and also has an improved web interface.

“This work is a great example of how multiple partners can come together to solve major resource management problems that are arising from California’s climate and fire trends,” said co-author Hugh Safford, regional ecologist for the USDA Forest Service’s Pacific Southwest Region and a member of the research faculty at UC Davis.

The paper “Effects of postfire climate and seed availability on postfire conifer regeneration” has been published in the journal Ecological Applications.

Tags: coniferforestwildfire

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Environment

Why firefighters in LA can’t use salt water from the ocean to battle wildfires

byTibi Puiu
7 months ago
Biology

The cute, fluffy panda may have had omnivorous ancestors

byMihai Andrei
11 months ago
Dragon Firefighter robot spewing water on flames.
Design

Meet Dragon Firefighter: A robot that uses water to fly

byRupendra Brahambhatt
2 years ago
Sequence of ecological events as recorded at Rancho La Brea, California. Image credits: Natural History Museums of Los Angeles County.
Animals

Sabertooth cats, dire wolves, and other megafauna went extinct 13,000 years ago in California. Wildfire and humans may be to blame

byFermin Koop
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.