ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Mitochondria and Tesla battery packs work pretty much the same way, study reports

But will they claim copyright?

Alexandru MicubyAlexandru Micu
October 15, 2019
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Mitochondria are built up of many individual bioelectric units that generate energy as an array — pretty much like a Tesla electric car battery.

Mitochondria (red) are organelles found in most cells. They generate a cell’s chemical energy. Image credits NICHD / U. Manor via NICHD / Flickr.

The prevailing theory up to now was that mitochondria, the organelles that produce energy for living cells, worked like one of the batteries in your remote: though a chemical reaction inside a single chamber or battery cell.

However, a new study from the University of California, Los Angeles (ULCA) finds that this isn’t the case. Mitochondria, they explain, work like arrays, with many, many battery cells that work to manage energy safely and provide fast access to high-intensity current.

Team effort

“Nobody had looked at this before because we were so locked into this way of thinking; the assumption was that one mitochondrion meant one battery,” said Dr. Orian Shirihai, a professor of medicine in endocrinology and pharmacology at the David Geffen School of Medicine at UCLA and senior author of the study.

All cells in our bodies, with the exception of red blood cells, contain one or more mitochondria — sometimes up to several thousands of them. These organelles (cellular organs) are covered in a smooth outer membrane and boast a wrinkled, inner membrane. The folds of this inner membrane (called ‘cristae’) extend all the way to the center of the organelle.

Up to now, it was assumed that the role of this wrinkly texture on the inner membrane was simply to increase the surface area and thus help increase the energy output.

However, the world works in mysterious ways; California has taken a leading role in renewable energy and e-vehicles, and that decision made the current study possible.

“Electric vehicle engineers told me about advantages of having many small battery cells instead of one large one; if something happens to one cell, the system can keep working, and multiple small batteries can provide a very high current when you need it,” Shirihai said.

Tesla vehicles are some of the best-known e-vehicles right now, so let’s take that as an example. Tesla battery packs are an array of 5,000 to 7,000 small battery cells (depending on the exact model). These batteries, while individually small, work in tandem to allow vehicles to charge rapidly, cool down more effectively, and to provide large amounts of power quickly when needed (such as when accelerating).

RelatedPosts

London’s Square Mile to use 100% renewable energy by October
Can we get wind power without the blades or the actual wind? These startups believe so
Stronger, longer-lasting perovskite solar panels could be on the way
New affordable fuel cells might spark microgrid revolution – a new age of energy independency

Using conventional microscopy, Shirihai observed that cells can function well with a small number of very long mitochondria, which didn’t fit in with what the engineers were telling him. So, instead, he started looking for the array inside individual mitochondria. Together with his colleagues, he developed a technique to map the voltage on the membrane of mitochondria in living cells with much better accuracy than ever before. Dane Wolf (first author) and Mayuko Segawa (second author), two UCLA students, optimized a form of high-resolution microscopy to peer into the interior of mitochondria and watch energy production and voltage distribution inside the organelle.

“What the images told us was that each of these cristae is electrically independent, functioning as an autonomous battery,” Shirihai said. “One cristae can get damaged and stop functioning while the others maintain their membrane potential.”

The inner membrane of the mitochondria loops back outward between each cristae, the team reports, and clusters of proteins form in this area and determine the boundaries of individual cristae. Previous research has shown that without these proteins, the mitochondria are more susceptible to damage, but not why; Shirihai’s study found why.

These proteins, the study explains, act as insulators between cristae. In effect, they turn a huge battery into a collection of smaller ones. If these proteins disappear, the mitochondria stop acting like battery arrays.

“The battery experts I had originally talked to were very excited to hear that they were right,” Shirihai said. “It turns out that mitochondria and Teslas, with their many small batteries, are a case of convergent evolution.”

The findings may help broaden our understanding of mitochondria, the roles they play in cells and in aging, and even shed light on new treatments for diseases and medical complications that involve disturbances in mitochondria or cristae structure.

The paper “Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent” has been published in The EMBO Journal.

Tags: cellenergymitochondria

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Genetics

UK Families Welcome First Healthy Babies Born With DNA From Three People

byTudor Tarita
3 weeks ago
a scale weighing renewables and fossil fuels
News

Over 90% of global renewable power projects are now cheaper than fossil fuels

byMihai Andrei
3 weeks ago
Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
2 months ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
2 months ago

Recent news

This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025

Drone fishing is already a thing. It’s also already a problem

August 15, 2025

Some People Are Immune to All Viruses. Scientists Now Want To Replicate This Ability for a Universal Antiviral

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.