ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Light pollution from research ship makes Artic zooplankton return to the deep

A team of researchers modified a kayak, equipped it with sensors, a petrol engine, strapped it to a ship, and set out to sea to measure zooplankton's reaction to artificial light.

Francesca SchiopcabyFrancesca Schiopca
January 29, 2018
in Animals, Environment, Environmental Issues, Pollution, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Zooplankton.
Image credits: Wikipedia.

Scientists discovered that zooplankton from the Arctic is very sensitive to light pollution. Even light coming from research ships can make these small organisms sink back into darkness. Sure, it was previously known that the light of a full moon or the northern lights would make these creatures retreat to deeper waters, but the possibility that ship-borne lights bothered them was still debatable.

“We did have a suspicion that this was the case,” said Martin Ludvigsen, a professor in NTNU’s Department of Marine Technology and at the university’s Centre of Autonomous Marine Operations and Systems. “We were able to demonstrate this, and show the significance of the lights from the ship” he added.

Run for the depths!

Zooplankton is the most widespread vertical migratory biomass on Earth (and armed to the teeth). Around the globe, these tiny animals rise to the surface during the night to feed and descend into deeper waters to avoid predators during the day. Research over the last decade shows that the weak moonlight or the northern lights cause zooplankton to retreat to darker waters.

Because of its photosensitivity, scientists have a hard time actually studying zooplankton: if light from their ships shines through to the small animals, any accurate recording of their population in an area becomes highly improbable.

To better understand the effects of light and light pollution on zooplankton, a team of researchers from NTNU, UiT (The Arctic University of Norway), the University of Delaware, and the Scottish Association for Marine Science modified a kayak, equipped it with sensors, a petrol engine, strapped it to a ship, and set it all out to sea. Once in open waters the kayak, dubbed Jetyak, was sent away from the research vessel and used to measure the depth reached by artificial light, as well as to record plankton thickness via sonar.

The “Jetyak” and a part of the research team.
Photo: Geir Johnsen, NTNU/UNIS

The acoustic data collected by the autonomous Jetyak showed that the layer of zooplankton was far thicker and started from closer to the surface near itself compared to that near the research boat (where the plankton was hiding from light). This effect reached depths of up to 80 meters.

“We were sort of surprised how pronounced this avoidance behavior was,” Ludvigsen said. “It was so clear and so fast. Even when we tried to reproduce this in a small boat and a headlamp, it was really easy to see in the echosounder.”

Photo from the board of the research ship.
Photo: Benjamin Hell

“These findings tell us that zooplankton populations and behavior can be under- or overestimated because these marine organisms respond to light, either by swimming away from it, or sometimes towards it,” said Geir Johnsen, co-author and a marine biologist at NTNU.

The biologist believes that scientists have to undertake their studies under natural conditions if they want to discover what zooplankton is truly up to. This means developing autonomous vehicles equipped to sample the vast seas.

Arctic fauna — ranging from bowhead whales to marine birds, to cod — feeds on zooplankton, particularly those in the genus Calanus. Their high content of fatty acids is what makes them such a filling meal.

RelatedPosts

A Massive Part of the Ocean Is Getting Darker and It’s Already Impacting Sea Life
Why is snow white?
What exactly is a photon? Definition, properties, facts
Companies push to start drilling for oil in Arctic refuge
Calanus glacialis
Photo: Malin Daase, UiT — The Arctic University of Norway

“Light pollution may disturb zooplankton behavior with respect to feeding, predator-prey relationships and diurnal migration, in addition to their development from juveniles to adults,” Johnsen said.

Global warming also poses a serious threat to the Arctic’s tiny inhabitants — as sea ice cover is growing thinner, or outright melting completely in large areas, zooplankton is rapidly running out of the dark areas they like, Johnsen remarked. Considering how central zooplankton is on the local menus, the Arctic ecosystem may have a lot to suffer.

The paper was published in the journal Science Advances.

Tags: arctichideslightplanktonresearch shipShipszooplankton

ShareTweetShare
Francesca Schiopca

Francesca Schiopca

Related Posts

News

This Unbelievable Take on the Double Slit Experiment Just Proved Einstein Wrong Again

byTibi Puiu
2 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago
Inventions

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

byTudor Tarita
2 months ago
Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.