ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Grasses steal neighbors’ genes to one-up other species

"They're OUR genes, tovarish plant" -- grasses.

Alexandru MicubyAlexandru Micu
February 18, 2019
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Grasses don’t play evolution by the rules, a new study reports. Instead of putting in the time to evolve beneficial genes, they just steal them from neighbors.

Foxtail grass.
Image via Pixabay.

New research at the Department of Animal and Plant Sciences at the University of Sheffield found that grasses engage in lateral gene transfer to acquire new, beneficial genes. The findings can help scientists reduce the risk of so-called “super-weeds” appearing — which form when wild plants take genes from GM (genetically-modified) crops to become resistant to herbicides.

Nice genes you got there

The findings suggest that wild grasses are basically genetically modifying themselves to gain a competitive advantage. This process stands in contrast to the theory of evolution as described by Charles Darwin, where natural selection affects which genes get passed from parent to offspring. It’s also, probably, a very lucrative deal for the grasses.

“Grasses are simply stealing genes and taking an evolutionary shortcut,” says lead author Dr Luke Dunning from the Department of Animal and Plant Sciences at the University of Sheffield.

“They are acting as a sponge, absorbing useful genetic information from their neighbours to out compete their relatives and survive in hostile habitats without putting in the millions of years it usually takes to evolve these adaptations.”

Grasses — including power-crops such as wheat, rice, or sugar cane — are some of the most economically and ecologically important plants on Earth. In a bid to understand their evolutionary journey, the team looked at the genome of Alloteropsis semialata, or black seed grass. This plant is spread quite widely across the planet, making a home in grasslands throughout Africa, Asia, and Australia.

Alloteropsis semialata flowers.
Alloteropsis semialata flowers.
Image credits Marjorie Lundgren via Wikimedia.

A. semialata’s genome was then compared to that of approximately 150 other species of grasses, including rice, maize, millets, barley, and bamboo. Based on this comparison, the team identified several genes that the grass laterally acquired from distant relatives (they looked for DNA sequences that were similar between two or more grass species). Furthermore, they found evidence that this process happens on a local level — in other words, the grass takes genes from its ecosystem-mates.

“We also collected samples of Alloteropsis semialata from tropical and subtropical places in Asia, Africa, and Australia so that we could track down when and where the transfers happened,” said Dr Dunning.

“Counterfeiting genes is giving the grasses huge advantages and helping them to adapt to their surrounding environment and survive — and this research also shows that it is not just restricted to Alloteropsis semialata as we detected it in a wide range of other grass species”

The team points out that this process is essentially the same as the technology behind GMO crops. As such, they hope the findings will help “us as a society reconsider how we view GM technology.”

“Eventually, this research may also help us to understand how genes can escape from GM crops to wild species or other non-GM crops, and provide solutions to reduce the likelihood of this happening,” Dr Dunning adds. “The next step is to understand the biological mechanism behind this phenomenon and we will carry out further studies to answer this.”

The paper “Lateral transfers of large DNA fragments spread functional genes among grasses” has been published in the journal Proceedings of the National Academy of Sciences.

RelatedPosts

Designer babies may be coming soon. Here’s why this matters
This Gene Explains Why Your Labrador Is Always Hungry — And Why Some Humans Struggle with Obesity
New gene-editing technology creates single-sex mice
How “vaccinating” plants can help crops fight pests without chemicals
Tags: genegeneticsGrassplants

Share40TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
2 weeks ago
Archaeology

Cats Came Bearing Gods: Religion and Trade Shaped the Rise of the Domestic Cat in Europe

byMihai Andrei
2 months ago
Animals

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

byTudor Tarita
3 months ago
Black Labrador is eating --ar 3:2 --style raw --stylize 300 Job ID: 8e6ba549-053a-4008-b029-8651ce4f44db
Animals

This Gene Explains Why Your Labrador Is Always Hungry — And Why Some Humans Struggle with Obesity

byTibi Puiu
3 months ago

Recent news

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.