ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

New fossil shows when worms developed heads

Too often we take our heads for granted.

Mihai AndreibyMihai Andrei
January 23, 2018
in Biology, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new study based on recent findings might shed a new light on annelids (ringed worms). Researchers now have solid evidence that these animals developed heads more than 500 million years ago. An extremely well-preserved fossil also suggests how the head evolved in the first place.

A fossil dating from the Cambrian, more than 500 million years ago. Note the bristles partially covering the head. Image credits: Jean-Bernard Caron/Royal Ontario Museum.

We take some of our biological features — such as the head — for granted. But five hundred million years ago, things were much more unfamiliar. Not only was the planet a completely different place, with different landscapes and atmospheric conditions, but heads were a scarce commodity. It’s not clear exactly when creatures started to evolve heads — areas of the body with concentrated sensorial functions — but some of the earliest evidence we have comes from 500 million years ago, during a period called the Cambrian.

Now, paleontologists working in Canada have found an intriguing Cambrian fossil which sheds new light on how annelids developed heads.

The fossil was found in the 508-million-year-old Marble Canyon site in the Burgess Shale in British Columbia. Burgess Shale is one of the best places for Cambrian fossils, with a long list of intriguing finds that enables us to better understand how life evolved. Now, we can add a new entry to that list: Kootenayscolex.

“508 million years ago, the Marble Canyon would have been teeming with annelids,” said Karma Nanglu, a University of Toronto PhD candidate, and a researcher at the Royal Ontario Museum, as well as the study’s lead author. “The fine anatomical details preserved in Kootenayscolex allow us to infer not only its evolutionary position, but also its lifestyle. Sediment preserved inside their guts suggest that, much as their relatives do in modern ecosystems, these worms served an important role in the food chain by recycling organic material from the sediment back to other animals that preyed on them.”

Kootenayscolex barbarensis, as its full name goes, had paired bundles of hair-sized bristles spread along the body, which allows paleontologists to positively identify it as an annelid. But unlike any other discovered fossil, these bristles were partially covering the head — specifically, the mouth. This seems to support the theory that the head evolved from posterior body segments, something which was also suggested by research on modern species.

Artistic reconstruction of how the species might have looked like. Image credits: Danielle Dufault/Royal Ontario Museum.

However, fossil evidence is extremely scarce. Since annelids are invertebrates (Kootenayscolex actually emerged as one of the first annelids), preservation of their soft bodies is extremely rare. The very process of fossilization favors the preservation of bones and other hard body parts, which makes this finding even more valuable: not only is it a rare occurrence of a preserved soft body, but it’s also caught in an important moment of its evolutionary history.

With over 17,000 extant species including ragworms, earthworms, and leeches, annelids are one of the most diverse groups on Earth. They can thrive in a variety of environments, from marine environments as distinct as tidal zones and hydrothermal vents to freshwater lakes and moist terrestrial environments. Wherever there’s some form of humidity, there’s a good chance to find an annelid. This diversity makes them an extremely interesting and important group to study, but it also makes it extremely difficult to look at the broad picture.

RelatedPosts

Ancient tooth found in Georgia tells us of the first human species to come into Europe
Fossil Friday: tiny tooth belonged to the smallest monkey ever found
The best-fossilized octopus we’ve ever found gets recreated in 3D to understand their evolution
New dinosaur species found bridges evolutionary gap

“Annelids are a hugely diverse group of animals in both their anatomies and lifestyles,” added Nanglu. “While this diversity makes them ecologically important and an evolutionarily interesting group to study, it also makes it difficult to piece together what the ancestral annelid may have looked like.”

The team’s research is due to be published in the journal Current Biology.

Tags: annelidBurgess shalefossil

Share5TweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Identical Dinosaur Prints Found on Opposite Sides of the Atlantic Ocean 3,700 Miles Apart

byTibi Puiu
5 days ago
News

Amateur paleontologist finds nearly complete 70-million-year-old massive Titanosaur while walking his dog

byTibi Puiu
2 weeks ago
Biology

Meet Mosura fentoni, the Bug-Eyed Cambrian Weirdo with Three Eyes and Gills in Its Tail

byMihai Andrei
1 month ago
News

Dinosaurs Were Doing Just Fine Before the Asteroid Hit

byTibi Puiu
2 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.