ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

Scientists track Earth’s ancient, destroyed oceans

The oceans and continents aren't as fixed as we tend to think of them.

Mihai AndreibyMihai Andrei
November 13, 2017
in Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

We think of oceans as eternal and stable; what could affect these endless fields of water? But everything changes, the plains, mountains, and the Earth itself. Throughout our planet’s geological history, oceans have been born and destroyed, and now we’re one step closer towards knowing how this happened.

The maps are showing different viewing options for the region under Southeast Asia. Illustration: Grace E. Shephard.

Seeing the past

Millions of years ago, the Earth was a different place. It’s not just the biodiversity and the climate, the oceans and the land looked different, too. That happens because the surface of the Earth is in constant motion. It doesn’t move by much (on the scale of centimeters per year), but give it enough time, and the change becomes noticeable. This happens due to the relative motion of the planet’s tectonic plates, pushed around by upwelling magma from the mantle.

The movement isn’t only lateral — it’s vertical as well. New crust is formed at mid-oceanic ridges, such as the Mid-Atlantic Ridge, and older crust is destroyed. Some of the crust goes up, the other sinks into the mantle, in the “geological graveyard.” This cycle also affects oceans. Sometimes, it opens up or spreads new oceans, and other times it closes them down. The Pacific, for instance, is currently expanding, while the older Atlantic is slowly shrinking. Now, researchers have used seismic tomography to have a “look” at this geological graveyard up to 2,800 km beneath the surface, identifying how the planet might have looked like 200 million years in the past.

This is not the first time something like this has been done. Several studies, using several different approaches, have retraced our planet’s evolution, sometimes ending up with different models. Now, Grace Shephard at the University of Oslo has found a simple, yet powerful way to combine images from alternative seismic tomography models.

“There are many different ways of creating such models, and lots of different data input can be used,” explains Grace Shephard, who has been a postdoctoral researcher at CEED since she took her Ph.D. at the University of Sydney four years ago.

“We wanted a quick and simple way to see which features are common across all of the models. By comparing up to 14 different models, for instance, we can visualize where they agree and thus identify what we call the most robust anomalies.”

The Arctic is a region where little is known about plate tectonics far back in time. That is one of the reasons why Australian Grace E. Shephard decided to join the CEED team of the University of Oslo. Photo: Dag Inge Danielsen/UiO.

A continental traffic jam

This tomography data gives more accurate and more easily available information about the movements of the oceans and continents, as well as the interaction between the Earth’s crust and the mantle. By seeing at what depth the former seafloor lies (the paleo-seafloor), and supposing that it sinks at a rate of 1 cm/year, researchers can calculate when the paleo-seafloor sank. Using this method, scientists found that there was a period around 100–140 million years ago that experienced more ocean destruction; it’s unclear why this happened. They also learned of an area of the mantle which is more ‘sticky’ — viscous — and exerts more opposition to sinking plates, resulting in a “traffic jam.”

The analysis raises new possibilities of understanding our planet’s history, but there’s still plenty of work to do. The models have to be constantly fine-tuned and improving using real-life observations.

“Studying these processes in new ways opens up new questions. That is something we welcome, because we need to find out what questions to ask and what to focus on in order to understand the development of the Earth. We always have to keep in mind what is an observation and what is a model. The models need to be tested against observations, to make way for new and improved models. It is an iterative procedure.”

Using the same approach, we can also derive information about the future. While it’s impossible to gauge how life will evolve over such a long timescale, geologically speaking, not that much will change.

RelatedPosts

AI-designed autonomous underwater glider looks like a paper airplane and swims like a seal
Your new phobia, unlocked: a rogue hole in the ocean
The Greenland ice sheet is losing some 270 billion tons of ice each year, a new study finds
Ancient volcanism shows our emissions can trigger a mass marine extinction

“If you look at Earth from space, the distribution of continents and oceans will then look much the same, even though life, the climate and sea level may have dramatically changed. If we move even further ahead, say 10 or 100 million years, it is very hard to say how oceans may be opening and closing, but we have some clues. Some people think that the Atlantic will close, and others think the Arctic or Indian oceans will close. We can follow the rules of the past when we look to the future, but this task keeps geoscientists very busy.”

Journal Reference: On the consistency of seismically imaged lower mantle slabs, G. E. Shephard, K. J. Matthews, K. Hosseini & M. Domeier, Scientific Reports 7,

Tags: continentoceanseismic tomographyTectonic Plates

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Biology

Scientists discover a giant virus in the Pacific with the longest tail ever recorded

byTudor Tarita
4 days ago
Geology

A Sixth Ocean Is Forming as East Africa Splits Apart

byTibi Puiu
4 weeks ago
Future

AI-designed autonomous underwater glider looks like a paper airplane and swims like a seal

byTudor Tarita
1 month ago
Geography

Your new phobia, unlocked: a rogue hole in the ocean

byMihai Andrei
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.