ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Natural Sciences → Geology and Paleontology → Volcanoes

The Three Main Types of Volcanoes

Volcanoes are some of the hottest features on the face of the Earth - here we detail the types of volcanoes.

Mihai AndreibyMihai Andrei
January 13, 2015 - Updated on September 21, 2023
in Volcanoes
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit

Volcanoes are some of the hottest (and coolest) things on the face of the Earth, but not all volcanoes are alike – and not all are like what you see in the movies.

The three main types of volcanoes are:

  • stratovolcano (or composite volcano) — a conical volcano consisting of layers of solid lava flows mixed with layers of other rock.
  • cinder cone volcano — doesn’t have any horizontal layers, and is instead a steep conical hill of tephra (volcanic debris) that accumulates around and downwind from the vent.
  • shield volcano —  a type of volcano built entirely or mostly from fluid lava vents. They are named like this because when viewed from above, you can see just how massive and imposing they are – like a warrior’s shield.

Now, let’s jump in more detail.

volcanoes
Image adapted from cotf.edu

If you really want to get your hands dirty and dive into volcanoes (figuratively), the fun starts here.

What is a volcano anyway?

Volcanoes are some of the most interesting features on Earth; they are basically ruptures in the Earth’s crust which allow magma to flow upwards. If you want to understand volcanoes, you have to understand plate tectonics. The surface of our planet is not one big piece – it is broken into 17 major, rigid tectonic plates, that move one in relationship to the other. These tectonic plates “float” on a hotter, softer layer in the Earth’s mantle. When that very hot and viscous layer comes up towards the surface, it’s called “magma”. Volcanoes on Earth are generally located in areas where the tectonic plates diverge or converge with each other. It’s easy to understand if you look at a world map with the plate tectonics and volcanoes:

Types of volcanoes

Basically, volcanoes only form where there’s a way for the magma to migrate towards the surface – such as a plate discontinuity or an area where the crust is very thin. There are also so-called “hotspots” – areas where the underlying mantle is much hotter than in other areas, either due to mantle plumes or lithospheric extension (it’s not clear yet which of the two theories is correct). Examples of hotspots include Hawaii and the Portuguese island of Madeira, but for the most part, volcanoes lie at the edge of tectonic plates.

Geological features, including types of volcanoes. Image via Britannica.

OK, so now we know that volcanoes form where the magma can rise up to the surface, which leads us to the next question:

RelatedPosts

Engineering students invent edible tape that stops burritos from falling apart
Black holes turn stars into spaghetti, devours them, then burp fire
Tree-ring records solve Medieval warming climate mystery
What to expect from Biden’s global climate change summit on Earth Day

Why does magma rise to the surface?

The key word here is buoyancy. Magma is very hot, and therefore less dense than the surrounding rocks; it simply rises due to a difference in buoyancy. This lighter magma rises toward the surface, and when its density is lower than the surrounding rocks, it flows towards the surface. But when the magma reaches the surfaces, another interesting thing happens.

magma volcano
A spectacular eruption in Stromboli, Italy. Image via Places Under the Sun.

If the magma contains volatile elements (water and/or gases), when it reaches the surface, these volatile elements will suddenly expand into steam and gas, causing a violent eruption. This tends to happen a lot of the magma is more acidic (has a higher silica content); with more basic types of magma, there is usually a continuous, steady flow (like in Hawaii).

So, now that we know what a volcano is and why it forms, let’s take a moment to “dissect one”.

Stratovolcano

When most people think about a volcano, they just imagine a conical mountain with ash and/or lava spewing out from its mouth. But that’s just one type of volcano – the stratovolcano (or composite volcano).

Stratovolcanoes consist of many layers (strata) of hardened lava, tephra, pumice, and volcanic ash. They generally have steep slopes and are the most common type of volcanoes on Earth. However, we haven’t been able to find composite volcanoes anywhere else in the solar system, with the exception of Mars. These are the “Hollywood volcanoes”, the ones you see in all the movies.

Stratovolcano
Plumes of steam, gas, and ash often occurred at Mount St. Helens, a stratovolcano, in the early 1980s. On clear days they could be seen from Portland, Oregon, 50 mi (80 km) to the south. The plume photographed here rose nearly 3,000 ft (910 m) above the volcano’s rim. The view is from Harrys Ridge, 5 mi (8 km) north of the mountain.
Lyn Topinka – CVO Photo Archive

They tend to form at subduction zones (where one tectonic plate is sliding beneath the other – the oceanic plate beneath the continental plate). Their eruptions are typically explosive and effusive; the magma is generally rich in volatiles because the magma rises as water trapped both in hydrated minerals and porous basalt rock of the upper oceanic crust is released into mantle rock of the asthenosphere above the sinking oceanic slab. This release of water pushes the magma toward the surface. The chemical composition of the magma is intermediate because it incorporates both basic (from the oceanic plate) and acidic minerals (from the continental plate).

The most well-known stratovolcanoes are Krakatoa, Mount Helen, and Vesuvius. Another famous stratovolcano is Mount Tambora – the site of the most powerful eruption in recorded history. Its volcanic cloud lowered global temperatures by as much as 3.5°C for up to one year. In parts of Europe and North America, 1816 was known as the “Year Without a Summer“, which caused a brief but bitter famine.

Spectacular eruption from the Puyehue volcano in Chile. Image via National Geographic.

Cinder Cone Volcano

cinder cone volcano
Capulin Volcano. Image via Wiki Commons.

A cinder cone volcano is simply a steep conical hill of tephra (volcanic debris) that accumulates around and downwind from a volcanic vent. The cinder cones are made from pyroclastic material, which is pretty loose. Cinder cones are commonly found on the flanks of shield volcanoes and stratovolcanoes.

cinder cone volcano
Kostal Cone in Wells Gray Provincial Park, British Columbia, Canada. Image via Black Tusk.

Some cinder cones are different than others, in that they only erupt once. However, even the ones that do erupt typically have a lower impact than stratovolcanoes.

Shield Volcanoes

A shield volcano is a type of volcano usually built almost entirely of fluid lava flows. They have very gentle slopes and are very developed horizontally. These are the classical Hawaii examples – steady flow and accumulation of lava leading to the shield-type formation. Mauna Loa, a shield volcano on the island of Hawaii, is the largest single mountain in the world, rising over 30,000 feet above the ocean floor and reaching almost 100 miles across at its base.

The “gentle” flow of a shield volcano – image via USGS.

Shield volcanoes are built by effusive eruptions, which flow out in all directions. They almost never have violent eruptions, with basic lava simply flowing out. Although the term is generally ascribed to basaltic shields it has at times been appended to rarer scutiform volcanoes of differing magmatic composition.

Most of what we know today about shield volcanoes comes from the study of the volcanoes in Hawaii. Hawaii lava generally has very high temperatures and low volatiles, and have many lava tubes. In Madeira (Portugal), the volcano is no longer active at the surface, and you can actually walk through the former lava tunnels.

Lava tunnel in Madeira. Image via Tim Bromllow.

These are the main types of volcanoes. I hope that clears it up a bit, but of course, it’s just the very basic information (pun intended, sorry). If you want more, or still have questions, feel free to message me and send your feedback!

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
2 days ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
2 days ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
2 days ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.