ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

NASA team to study Kilauea volcano from ground, air, and space

NASA's bringing out the big guns.

Mihai AndreibyMihai Andrei
February 9, 2017
in Geology, News, Remote sensing, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Kilauea is one of the world’s most iconic volcanoes and one that’s been thoroughly studied for decades. But even so, there’s still plenty we’ve yet to learn about the emblematic volcano, and about volcanoes in general. NASA’s approach is to tackle the volcano from all possible angles: from ground, air, and space. They hope that remote sensing could provide a trove of valuable information, especially regarding volcanic emissions and their transport.

NASA volcanoes

Imaging spectroscopy data of Hawaii’s Kilauea Volcano from NASA’s Airborne Visible/Infrared Imaging Spectrometer. Kilauea’s lava lake (orange) and ash plume (light blue) are visible in the lower center. The data are used to study lava temperature and properties, and ash and gas plume characteristics. Credit: NASA/JPL-Caltech

Kilauea is an active shield volcano in the Hawaiian Islands, and the most active of the five volcanoes that together form the island of Hawaiʻi. We’ve all seen it in pictures, and some have been lucky enough to see it in person, but Kilauea still keeps plenty secrets hidden. With this in mind, scientists from NASA, the USGS Hawaiian Volcano Observatory (HVO), Hawaii Volcanoes National Park, and several universities embarked on an epic six-week field campaign to study the links between volcanic gases/thermal emissions and vegetation health and extent. They also want to study the flow of lava from the volcanoes, thermal anomalies, gas plumes, other active volcanic processes, as well as ways to mitigate volcanic hazards. They’re also analyzing Hawaii’s coral reefs and their interaction with the volcano.

The on-site team will be complemented by NASA’s Hyperspectral Infrared Imager (HyspIRI) satellite mission, a new approach to studying Earth ecosystems. HyspIRI is basically an imaging spectrometer measuring from the visible to short wave infrared, providing critical information on natural disasters including volcanoes, wildfires, and drought. The imager can identify what type of vegetation is present and whether the vegetation is healthy or not. This will provide a benchmark on the state of the worlds ecosystems against which future changes can be assessed. The mission will also assess the pre-eruptive behavior of volcanoes and the likelihood of future eruptions as well as the carbon and other gases released from wildfires. So it’s not just about understanding Kilauea — the technology could be used in many places around the world.

“The data collected during the HyspIRI airborne campaign will advance our understanding of volcanic processes on Hawaii and elsewhere around the world,” said Ben Phillips, lead for NASA’s Earth Surface and Interior focus area, NASA Headquarters, Washington. “Such observations may inform future decisions by volcano hazard responders and regulatory agencies.”

The imager will be carried by a Lockheer ER-2 aircraft flying at 65,000 feet (19,800 meters), above 95 percent of Earth’s atmosphere, replicating the data that would come from a satellite (NASA hope to develop all this into a satellite in the future). The ER-2 will carry other type of sensors as well, including an Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and the MODIS-ASTER Airborne Simulator (MASTER). Another aircraft will carry JPL’s Glacier and Land Ice Surface Topography Interferometer (GLISTIN) instrument, which will collect high-resolution data to measure topographic changes from new Kilauea lava flows.

Beautiful view of the island of Hawaii from the window of NASA’s ER-2 aircraft. Credits: NASA

Volcano emissions

Kilauea has been in a constant eruption limbo for centuries, constantly spewing lava with some breaks in between. When it started erupting again in 2008, it also started emitting dramatic levels of sulphur dioxide. What NASA wants to study now is the so-called vog — a dangerous type of volcanic air pollution present across much of Hawaii. Using MASTER and AVIRIS, the team plans to study Kilauea’s releases of heat and gas, mapping the composition and chemical evolution of its gas plumes.

Vog is a form of air pollution that results when sulfur dioxide and other gases and particles emitted by an erupting volcano react with oxygen and moisture in the presence of sunlight.  The data is expected to help researchers better understand how quickly sulfur dioxide morph into aerosols, creating maps of how this rate varies from area to area. These maps will then be used to forecast the development of vog and develop evolution models.

Volcanic emissions also affect the health of plants in the volcano’s proximity, and the health and extent of vegetation near volcanoes might signal impending eruption, but this is insufficiently studied at the moment. Detecting and characterizing the effect the eruption has on plants could provide another proxy, another indirect indication of what’s happening to a volcano. The NASA team is also looking at thermal anomaly detection (which might also precede an eruption), measuring changes in lava flow volume, and ways to improve estimates of volcano thermal data. All in all, it’s a trove of scientific data, and one which might prove vital for our understanding of volcanic eruptions.

RelatedPosts

How are rainbows made? The colorful physics behind
A blood test that can detect early-stage cancer is accurate enough to be rolled out
Could electrical stimulation and robot-assisted exercise reverse paralysis? New results are a resounding ‘yes!’
Global mobility: science is on the move

 

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Science

Climate Change Is Breaking the Insurance Industry

byMihai Andrei
57 minutes ago
Environment

9 Environmental Stories That Don’t Get as Much Coverage as They Should

byMihai Andrei
2 hours ago
Environment

Scientists Find CBD in a Common Brazilian Shrub That’s Not Cannabis

byTibi Puiu
3 hours ago
Spruce tree in Dolomites with recording unit attached. photo credit Monica Gagliano

A ground breaking international study has revealed spruce trees not only respond to a solar eclipse but actively anticipate it by synchronising their bioelectrical signals hours in advance into a cohesive, forest-wide phenomenon.
The discovery, published in the journal Royal Society Open Science, shows older trees exhibit a more pronounced early response, suggesting these ancient sentinels retain decades of environmental memory and may use it to inform younger trees of impending events.
This study adds to the emerging evidence that plants are active, communicative participants in their ecosystems, capable of complex, coordinated behaviours akin to those seen in animal groups.
Biology

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

byTibi Puiu
5 hours ago

Recent news

Climate Change Is Breaking the Insurance Industry

May 8, 2025

9 Environmental Stories That Don’t Get as Much Coverage as They Should

May 8, 2025

Scientists Find CBD in a Common Brazilian Shrub That’s Not Cannabis

May 8, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.