Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Geology

There’s an ancient Earth within a new Earth, new geochemistry findings suggest

Billions of years ago, our ancient planet collided with a Mars-sized object called Theia. The impact released tremendous amounts of energy which is thought to have produced a whole mantle magma ocean, which should have erased pre-existing chemical heterogeneities within the Earth. Following the onslaught, a new Earth formed, along with the moon. New geochemical findings hint that the impact didn't completely melt the whole planet, leaving clumps and patches intact. This ancient past is thought to still ripple in Earth's mantle.

Tibi Puiu by Tibi Puiu
February 11, 2015
in Geology, News

Billions of years ago, our ancient planet collided with a Mars-sized object called Theia. The impact released tremendous amounts of energy which is thought to have produced a whole mantle magma ocean, which should have erased pre-existing chemical heterogeneities within the Earth. Following the onslaught, a new Earth formed, along with the moon. New geochemical findings hint that the impact didn’t completely melt the whole planet, leaving clumps and patches intact. This ancient past is thought to still ripple in Earth’s mantle.

Earthception

earth_impact_moon
Image: Mr Edens

According to lead researcher Associate Professor Sujoy Mukhopadhyay (Harvard): “The energy released by the impact between the Earth and Theia would have been huge, certainly enough to melt the whole planet. But we believe that the impact energy was not evenly distributed throughout the ancient Earth. This means that a major part of the impacted hemisphere would probably have been completely vaporised, but the opposite hemisphere would have been partly shielded, and would not have undergone complete melting”.

The researchers analyzed the ratios of noble isotopes harvested from deep within the Earth’s mantle, then compared them with those collected nearer to the surface. The found that 3He to 22Ne ratio from the shallow mantle is significantly higher than the equivalent ratio in the deep mantle. Analysis of the 129-Xenon to 130-Xenon ratio came out similarly. If the 4.5 billion year-old Theia impact had completely melted ancient Earth, then we should have seen a more evenly mixed mantle.

Professor Mukhopadhyay continued: “The geochemistry indicates that there are differences between the noble gas isotope ratios in different parts of the Earth, and these need to be explained. The idea that a very disruptive collision of the Earth with another planet-sized body, the biggest event in Earth’s geological history, did not completely melt and homogenize the Earth challenges some of our notions on planet formation and the energetics of giant impacts. If the theory is proven correct, then we may be seeing echoes of the ancient Earth, from a time before the collision”.
Commenting, Professor Richard Carlson (Carnegie Institute of Washington), Past President of the Geochemical Society said: “This exciting result is adding to the observational evidence that important aspects of Earth’s composition were established during the violent birth of the planet and is providing a new look at the physical processes by which this can occur”.

The findings were presented at the at the Goldschmidt conference in Sacramento, California.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Earth’s magnetic field could flip within a human lifetime
  2. Ancient teeth suggest Neanderthals and Homo sapiens got it on more than a few times
  3. Scientists find diamonds forged deep within a lost, ancient planet of the early solar system
  4. A new kind of planet found – the mega-Earth – suggest higher possibilities of locating habitable worlds
  5. Findings cast doubt on Moon’s origin
Tags: earthisotopeMoontheia

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW