ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Astronomers find the farthest evidence of fluoride to date, in a distant galaxy

This will teach us a lot about how the element forms in the Universe.

Alexandru MicubyAlexandru Micu
November 4, 2021
in Chemistry, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

An international team of astronomers reports on a new sighting of fluorine in another galaxy. This is the farthest the element has ever been detected and will help us better understand the stellar processes that lead to its creation.

This artist’s impression shows NGP–190387. Image credits ESO.

Fluorine is the lightest chemical element in the halogen group, which it shares with other gases such as chlorine. It’s a very reactive element, and in our bodies, it helps give our bones and teeth mechanical strength as fluoride.

New research is helping us understand how this element is formed inside stellar bodies. The study also marks the farthest this element has ever been detected from our galaxy.

From stars to pearly whites

“We all know about fluorine because the toothpaste we use every day contains it in the form of fluoride,” says Maximilien Franco from the University of Hertfordshire in the UK, who led the new study.

“We have shown that Wolf–Rayet stars, which are among the most massive stars known and can explode violently as they reach the end of their lives, help us, in a way, to maintain good dental health!” he adds, jokingly.

The findings were made possible by a joint effort between the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Southern Observatory (ESO), and pertain to a galaxy that’s 12 billion light-years away. The team identified fluorine in the form of hydrogen fluoride as large clouds of gas in the galaxy NGP-190387.

Due to the distance between Earth and NGP-190387, we still see it as it was at only 1.4 billion years old, around one-tenth of the estimated age of the Universe.

Like most of the chemical elements known to us, fluoride forms inside active stars. However, until now, we didn’t know the details of this process, or which stars produced the majority of the fluorine in the Universe.

This discovery helps us better understand how fluorine forms because stars expel chemical elements from their core near to or during the end of their lives. Due to the young age we perceive this galaxy as having from Earth, we can infer that the stars which formed the clouds of hydrogen fluoride must have appeared and died quickly in the grand scheme of things.

RelatedPosts

Hourglass Figures are like drugs to men
Two billion years ago, Andromeda ‘ate’ a sister-galaxy of the Milky Way
Astronomers use gravity to zoom in on incredibly distant star
Scientists figured out a way to recycle clothes — without needing to burn them

Wolf-Rayet stars, very large stellar bodies that only live for a few million years, are the main candidate that the team is considering. They fit the criteria of having short lives, and their size would allow for the huge quantities of hydrogen gas spotted in NGP-190387. Plus, it fits with our previous theories — Wolf-Rayet stars have been suggested as an important source of fluorine in the past, but we didn’t have enough data to confirm this theory, nor did we know how important they were for this process.

Although other processes have been suggested as likely sources of cosmic fluorine, the team believes that they couldn’t account for the time frame involved, nor for the sheer quantity of the element in NGP-190387.

“For this galaxy, it took just tens or hundreds of millions of years to have fluorine levels comparable to those found in stars in the Milky Way, which is 13.5 billion years old. This was a totally unexpected result,” says Chiaki Kobayashi, a professor at the University of Hertfordshire and co-author of the paper. “Our measurement adds a completely new constraint on the origin of fluorine, which has been studied for two decades.”

This is also the first time fluoride has been identified in such a far-away, star-forming galaxy. Since the distances involved in studying the Universe also mean that the further you look, the further back in time you see, it’s also the youngest star-forming galaxy we’ve ever detected fluoride in.

The paper “The ramp-up of interstellar medium enrichment at z > 4” has been published in the journal Nature Astronomy.

Tags: Chemistryelementfluoridegalaxystar

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

Fluoride in water doesn’t affect brain development, another study finds

byMihai Andrei
5 months ago
News

Astronomers Shocked as JWST Uncovers Massive Galaxies That Challenge Gravity Theory. Is Dark Matter Theory Wrong?

byTibi Puiu
7 months ago
Science

JWST Uncovers Massive ‘Red Monster’ Galaxies Lurking in the Early Universe

byTibi Puiu
7 months ago
rebels-25
News

Most distant rotating galaxy ever found is baffling similar to Milky Way

byJordan Strickler
8 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.