ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Our eyes have a focal point — but images don’t seem to focus on it, weirdly

This, unexpectedly, makes our vision a bit better.

Alexandru MicubyAlexandru Micu
August 3, 2021
in Biology, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research says that if you want to see something better, you shouldn’t look directly at it. At least, that’s what our eyes seem to believe.

Image via Pixabay.

Researchers at the University of Bonn, Germany, report that when we look directly at something, we’re not using our eyes to their full potential. When we do this, they explain, light doesn’t hit the center of our foveas, where photoreceptors (light-sensitive cells) are most densely packed. Instead, light (and thus, the area where images are perceived) are shifted slightly upwards and towards the nose relative to this central, highly sensitive spot.

While this shift doesn’t seem to really impair our perception in any meaningful way, the findings will help improve our understanding of how our eyes work and how we can fix them when they don’t.

I spy with my little eye

“In humans, cone packing varies within the fovea itself, with a sharp peak in its center. When we focus on an object, we align our eyes so that its image falls exactly on that spot — that, at least, was the general assumption so far,” says Dr. Wolf Harmening, head of the adaptive optics and visual psychophysics group at the Department of Ophthalmology at the University Hospital Bonn and corresponding author of the paper.

The team worked with 20 healthy subjects from Germany, who were asked to fixate on (look directly at) different objects while monitoring how light hit their retinas using “adaptive optics in vivo imaging and micro-stimulation”. An offset between the point of highest photoreceptor density and where the image formed on the retina was observed in all 20 participants, the authors explain. They hypothesize that this shift is a natural adaptation that helps to improve the overall quality of our vision.

Our eyes function similarly to a camera, but they’re not really the same. In a digital camera, light-sensitive elements are distributed evenly across the surface of their sensors. They’re the same all over the sensor, with the same size, properties, and operating principles. Our eyes use two types of cells to pick up on light, the rod and cone photoreceptors. The first kind is useful for seeing motion in dim light, and the latter is suited to picking out colors and fine detail in good lighting conditions.

Unlike in a camera, however, the photosensitive cells in our retinas aren’t evenly distributed. They vary quite significantly in density, size, and spacing. The fovea, a specialized central area of our retinas that can produce the sharpest vision, has around 200,000 cone cells per square millimeter. At the edges of the retina, this can fall to around 5,000 per square millimeter, which is 40 times less dense. In essence, our eyes produce high-definition images in the middle of our field of view and progressively less-defined images towards the edges. Our brains kind of fill in the missing information around the edges to make it all seem seamless — but if you try to pay attention to something at the edges of your vision, you’ll notice how little detail you can actually notice there.

It would, then, seem very counterproductive to have the image of whatever we’re looking at directly form away from the fovea. Wouldn’t we want to have the best view of whatever we’re, you know, viewing? The team explains that this is likely an adaptation to the way human sight works: both eyes, side by side, peering out in the same direction.

RelatedPosts

Scientists bring nerve cells from human eyes back from the dead
Woman burns her retinas looking at the eclipse and doctors take the first-ever pictures of such damage
Human eye inspired processor is 400 times faster at detecting sub-atomic particles
Gold-infused contact lenses that treat red-green color blindness could hit the market soon

All 20 participants in the study showed the same shift, which was slightly upwards and towards the nose compared to the fovea. For some, this offset was larger, for some, smaller, but the direction was always the same for all participants, and all of them showed symmetry in the offset between both eyes. Follow-up examinations carried out one year after the initial trials showed that these focal points had not moved in the meantime.

“When we look at horizontal surfaces, such as the floor, objects above fixation are farther away,” explains Jenny Lorén Reiniger, a co-author of the paper. “This is true for most parts of our natural surrounds. Objects located higher appear a little smaller. Shifting our gaze in that fashion might enlarge the area of the visual field that is sheen sharply.”

“The fact that we were able to detect [this offset] at all is based on technical and methodological advances of the last two decades,” says Harmening.

One other interesting conclusion the authors draw is that, despite the huge number of light-sensitive cells our retinas contain, we only use a small fraction of them — around a few dozen — when focusing on a single point. Even more, it’s probably the same cells all throughout our lives, as the focal point doesn’t seem to move over time. While this is an interesting tidbit to share in trivia, it’s also valuable for researchers trying to determine how best to repair eyes and restore vision following damage or disease.

The paper “Human gaze is systematically offset from the center of cone topography” has been published in the journal Current Biology.

Tags: eyefovearetina

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Health

Drug Regenerates Retina and Restores Vision in Blind Mice

byTibi Puiu
2 weeks ago
Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
2 weeks ago
Future

Eye implants may soon be used to treat diabetes

byMihai Andrei
1 year ago
Health

Scientists make 3D-printed eye prosthetics that look and feel real

byTibi Puiu
1 year ago

Recent news

Spruce tree in Dolomites with recording unit attached. photo credit Monica Gagliano

A ground breaking international study has revealed spruce trees not only respond to a solar eclipse but actively anticipate it by synchronising their bioelectrical signals hours in advance into a cohesive, forest-wide phenomenon.
The discovery, published in the journal Royal Society Open Science, shows older trees exhibit a more pronounced early response, suggesting these ancient sentinels retain decades of environmental memory and may use it to inform younger trees of impending events.
This study adds to the emerging evidence that plants are active, communicative participants in their ecosystems, capable of complex, coordinated behaviours akin to those seen in animal groups.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

May 8, 2025

The Haast’s Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

May 8, 2025
A unique eye accessory

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

May 8, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.