Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Computer implant translates paralyzed man’s brain activity directly into words and sentences

Brain waves that normally control the patient's vocal tract have been converted into entire sentences on a computer screen.

Tibi Puiu by Tibi Puiu
July 16, 2021
in Future, News, Science
Picture of neurosurgeon Edward Chang who was involved in a groundbreaking brain-computer system that allowed a paralyzed man to express his thoughts at 15 words a minute. Credit: Barbara Ries/UCSF.

A brainstem stroke following a horrible car crash left a 20-year-old man paralyzed, robbing him of speech. Eighteen years after his dreadful accident, the man is now able to communicate with the outside world thanks to a medical implant that converts brain waves into sentences on a computer. Although this is just a proof-of-concept, the research is extremely promising, suggesting it may one day be possible to restore sophisticated communication abilities to people who became speech impaired because of an injury.

“Most of us take for granted how easily we communicate through speech,” Dr. Edward Chang, a neurosurgeon at the University of California, San Francisco, told the Associated Press. “It’s exciting to think we’re at the very beginning of a new chapter, a new field.”

People who are paralyzed and have a speech disability have very limited options for communication. The patient mentioned in this new research, for instance, would communicate using a pointer attached to a baseball cap in a pecking motion on a touchscreen to type words or letters. Other patients who might not even be able to use their necks rely on devices that track eye movements and translate them into a cursor movement to select words or letters on a computer screen.

While these options allow paralyzed patients a semblance of connection with the outside world, they’re painfully slow. This is where brain-computer interfaces come in. Their jaw-dropping ability to transform neural activity into an actionable potential has been impressive, to say the least.

These include implants that transform the thoughts of a patient imagining they were writing a sentence by hand with a pen into the actual sentence on a computer screen. Brain-computer interfaces can also be used by paralyzed patients to control mechanical arms, exoskeletons, and even drones. Such interfaces can also facilitate a telepathic-like exchange of information between two people.

Rather than making a mind-controlled prosthetic, Chang and colleagues’ work centers on a neuroprosthetic for speech. The device converts brainwaves that normally control the subtle movements of the lips, jaw, tongue, and larynx to form sounds into words or entire sentences on a computer screen.

After implanting electrodes on the surface of the patient’s brain area responsible for controlling speech, the computer algorithm was trained with neural patterns as the man attempted to say common words such as “water” or “good”. The training took place over the course of 50 sessions spaced over almost two years.

The algorithm was thus taught to associated specific brain wave patterns with 50 words that could be used to form over 1,000 sentences. Previously, Chen’s lab had spent years mapping the brain’s areas responsible for speech, so they had a lot of experience.

For instance, when prompted with questions like ‘How are you today?’ or ‘Are you thirsty?‘ the man answered ‘Am very good’ or ‘No, I am not thirsty’ using the text-based communication enabled by the device that read his thoughts.

It takes three to four seconds for the words imagined by the patient to appear on the computer screen. That’s not nearly as fast as speaking but still much faster than tapping out a response, the researchers explained in a paper published in the New England Journal of Medicine.

The prototype could be refined and turned into a device that helps people with injuries, strokes, or illnesses like Lou Gehrig’s disease that interferes with the delivery of messages from the brain to the vocal tract.

The researchers plan on improving the speed, accuracy, and vocabulary size of their algorhythm. The goal is to have a device that generates voice rather than text on a screen.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Paralyzed man becomes the first person to feel physical sensations through a prosthetic hand directly connected to his brain
  2. AI translates handwriting brain activity into text
  3. Brain-computer interface allows paralyzed to type fast and accurately by power of thought alone
  4. Paralyzed rats regain use of hind legs with flexible spinal cord implant. Humans to follow
  5. That urge to complete other people’s sentences? Turns out the brain has its own Auto Correct

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW