Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

X-rays image atoms during chemical reactions for the first time

Tibi Puiu by Tibi Puiu
June 24, 2014
in Chemistry, Discoveries

Since its advent some 100 years ago, crystallography has become one of the most important processes in chemical research and development. It involves bombarding a material with X-rays to produce a diffraction pattern as they reflect off the sample. The pattern can be used then to directly determine the atomic structure of the crystal. Using this technique, the structure of DNA was first obserbed, along with that of diamond, table salt, penicillin, numerous proteins, and entire viruses.

Crystallography works for only still structures, yet if Makoto Fujita at the University of Tokyo is correct, then a refined process can be used to image atomic arrangements as chemical reactions happen in real time. This means nothing short of crystallography 2.0 – similar to the technological jump from still photography to motion picture video recording.

Fujita and colleagues studied how a catalyst – a molecule that accelerates a chemical reaction without actually reacting with the elements involved in it – called palladium worked its magic in a reaction where it accelerates the attachment of a bromine atom to a larger molecule. This reaction was carried out in a solution, however modern crystallography can not provide snapshots of atomic structures of molecules moving in a solution. The researchers thus had to employ a trick.

The X-ray snapshots in the figure show the atomic arrangement of the molecule being brominated before, during, and after the reaction. Photo: Fujita et al/JACS
The X-ray snapshots in the figure show the atomic arrangement of the molecule being brominated before, during, and after the reaction. Photo: Fujita et al/JACS

The scientists trapped the catalyst and reacting molecules in a cage, before taking X-ray snapshots during the reaction. This proved to be key for their experiments since it made the molecules still for enough time to allow X-ray imaging capture. This helped Fujita and colleagues better explain and determine how the palladium catalyst played its part in the said reaction. Most importantly, however, the experiment demonstrates a new way to use crystallography to image the structure of changing compounds.

Findings appeared in the Journal of American Chemical Society.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Scientists image chemical reactions to improve industrial chemistry
  2. A chemical bond is born: X-rays image reactants as they form new molecules for the first time
  3. Scientists record video of atoms forming chemical bonds in real time
  4. Chemical reactions turns CO2 into semiconductor material, and releases energy [!]
  5. We can now film chemical reactions on an atomic level as they unfold
Tags: catalystcrystallography

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW