Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Biology

Scientists create ‘artificial evolution’ for the first time

Dragos Mitrica by Dragos Mitrica
December 9, 2014
in Biology, Chemistry, News

Scientists have made a significant step towards developing fully artificial life – for the first time, they demonstrated evolution in a simple chemistry set without DNA.

In a way, the researchers showed that the principle of natural selection doesn’t only apply to the biological world. Using a simple a robotic ‘aid’, a team from the University of Glasgow managed to create an evolving chemical system. They used an open source robot based upon a cheap 3D printer to create and monitor droplets of oil. The droplets of oil were placed in water-filled Petri dishes, and each dropled had a slightly different mixture of 4 different chemical compounds.

Photographs of the droplet behaviour as a function of time (from left to right) for all the traits (given in a–i). Image credits: Cronin et al, 2014.

The robot used a simple video camera to monitor, process and analyse the behaviour of 225 differently-composed droplets, identifying a number of distinct characteristics such as vibration or clustering. The team focused on division, movement and vibration as parameters to study evolution. They used the robot to deposit populations of droplets of the same composition, then ranked these populations in order of how closely they fit the criteria of behaviour identified by the researchers. They then created a new generation of droplets, with the best matching (“fittest”) composition carrying on to the second generation. After repeating this process for 20 generations, they found that droplets became more stable, mimicking the natural selection of evolution.

In other words, the robot acted as like a selection mechanism – much like environmental factors act in nature for organisms, and the chemical droplets acted like organisms, “improving” with each generation. Professor Lee Cronin, the University of Glasgow’s Regius Chair of Chemistry, who led the study said:

“This is the first time that an evolvable chemical system has existed outside of biology. Biological evolution has given rise to enormously complex and sophisticated forms of life, and our robot-driven form of evolution could have the potential to do something similar for chemical systems.

Photograph showing the pumps: cleaning and oil phases, the mixing array, the syringe array held in the X–Y stage, the evolutionary arena, the optical imaging system held below the evolution arena, the motors controlling the X–Y carriage and the computer interface. Image credits: Cronin et al, 2014.

“This initial phase of research has shown that the system we’ve designed is capable of facilitating an evolutionary process, so we could in the future create models to perform specific tasks, such as splitting, then seeking out other droplets and fusing with them. We’re also keen to explore in future experiments how the emergence of unexpected features, functions and behaviours might be selected for.

“In recent years, we’ve learned a great deal about the process of biological evolution through computer simulations. However, this research provides the possibility of new ways of looking at the origins of life as well as creating new simple chemical life forms.”

This is not the first time evolution has been demonstrated outside of biological systems. However, it’s the first time it has been done in the physical world. By this I mean that evolution has often been emulated in software.

Journal Reference: Juan Manuel Parrilla Gutierrez, Trevor Hinkley, James Ward Taylor, Kliment Yanev & Leroy Cronin. Evolution of oil droplets in a chemorobotic platform. Nature Communications 5, Article number: 5571 doi:10.1038/ncomms6571

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Scientists create artificial material capable of metabolism, self-assembly, movement, and organization — key traits of life
  2. Scientists create artificial skin that sprouts new hairs and sweats
  3. Scientists create artificial muscles from nanotubes
  4. Researchers create fuel from water, CO2, and artificial photosynthesis
  5. Researchers create a remarkably accurate model of our Universe and its evolution
Tags: evolutionnatural selectionUniversity of Glasgow

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW