Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Chemistry

Cheap and easy to make catalyst could replace platinum in fuel cells

Tibi Puiu by Tibi Puiu
January 6, 2014
in Chemistry, News, Renewable Energy

Fuel cells are absolute wonders of technology – electrochemical systems that directly convert the chemical energy of a fuel (hydrogen and oxygen) into electricity and heat. There’s no combustion, and consequently fuel cells aren’t limited by the same thermodynamic cycles as a typical heat engine. A theoretical efficiency of 70% is thus reached – which is staggering compared to burning fossil fuels. There are numerous hurdles that have prevented so far the hydrogen economy via fuel cells from booming. One such difficulty is the expensive use of platinum as catalysts in the fuel cell.

Researchers at the Max Planck Institute for Solid State Research in Stuttgart report they’ve made a new type of catalyst based on earth-abundant metals (iron and manganese) embedded into organic molecules. The researchers hope the catalyst may be employed as a substitute to platinum, the expensive noble metal.

[ALSO READ] New, affordable fuel cells could spark micro-grid revolution 

A new catalyst for fuel cells

This scanning tunnelling microscopy image shows how iron atoms and organic molecules become ordered in patterns on a gold substrate. (c) Nature Comm
Iron atoms and organic molecules become ordered in patterns on a gold substrate. (c) Nature Comm

Platinum has proven to be essential in driving the key oxygen reduction reaction at the anode side of the fuel cell. Here, oxygen molecules combine cu hydrogen ions and electrons to form water and heat, while an external circuit funnels electrons to an fro the two electrodes, driving an electrical current in the process. Typically, oxygen can combine with either two or four electrons, depending on whether it reacts directly with hydrogen or via an intermediate hydrogen peroxide molecule to form water.

The type of electrochemical conversion we see in fuel cells is far from being an unique man-made wonder. The process can be seen in nature, employed by various biological entities including inside us, humans. As we breath in fresh air, enzymes – which are basically natural catalysts – help drive a combination reaction between oxygen and hydrogen producing energy. The researchers at Max Planck sought inspiration from similar enzymes to replicate in an artificial system of their own.

Such oxygen-reducing enzymes contain metals like iron and manganese, while organic molecules act like sort of anchors for the metals, holding them tight for oxygen to easily bind with them. Klaus Kern and his staff member Doris Grumelli from the Max Planck Institute for Solid State Research vaporized iron and manganese atoms together with organic molecules, in a high vacuum environment, and deposited these on a gold substrate. The resulted molecules auto-assembled and became ordered in patterns that strongly resemble the functional centres of enzymes.

Reducing oxygen – the key

Schematic shows how iron atoms (blue) and the organic molecules (green, black) form a lattice pattern on the gold substrate. (c) Nature Comm
Schematic shows how iron atoms (blue) and the organic molecules (green, black) form a lattice pattern on the gold substrate. (c) Nature Comm

After a bit of toying around for a solution to move the samples into a liquid (transferring samples from high vacuum can be tricky), the researchers eventually landed these on an electrodes surface. It turned out that the catalytic activity depended of the kind of metallic centre, while, on the other hand, the stability of the structure depended on the type of organic molecules that form the network. Iron atoms led to a two-level reaction via the intermediate hydrogen peroxide molecule, while manganese atoms produced a direct reaction of oxygen to water. The reactions took place in an alkaline medium.

Scientists are more interested in a direct reaction, since it’s more efficient, however a hydrogen peroxide reaction could be useful in other applications rather than fuel cells, like biosensors. In any even, the researchers pride themselves with having made a nano-catalyst that is easy to make (vapor deposition is a heavily employed method in the industry) and cheap (readily available metals and organics).

Findings were reported in the journal Nature Communications.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Cheap catalyst reverses combustion and turns CO2 into ethanol fuel
  2. This cheap catalyst might finally make the hydrogen economy work
  3. New ceramic catalyst sponge promises to turn waste organic matter into cheap biofuel, medicine
  4. Jet Fuel and Enzymes power Fuel Cell for the First Time
  5. New, cheap artificial photosynthesis scrubs the air and produces fuel
Tags: chemical reactionelectrochemical reactionfuel cell

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW