ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

One-way camel trade is keeping another coronavirus at bay, but it could still spark the next pandemic

That’s not a headline I expected to be writing today.

Alexandru MicubyAlexandru Micu
June 9, 2021
in Biology, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Not to make anyone feel uneasy after this whole pandemic thing, but a new study says there’s another viral threat looming on the horizon.

Dromedary with a traditional, colorful saddle. Image via Wikimedia.

An international team of researchers is drawing attention to the fact that the Middle East respiratory syndrome (MERS-CoV), could mutate to become a global problem quite easily. While MERS has caused issues in the past and was highly lethal, it didn’t seem to be able to jump from one human to another, which limited its impact.

However, such an ability could be only a few mutations away for the virus. One subfamily of the virus is already able to infect humans, but luckily, it is still isolated from the main group. However, if these two were to come into contact, MERS could start the next pandemic.

Just one unlucky break

Pandemics, or the plagues of yore, usually start from zoonoses. These aren’t noses that like zoos at all. Rather, they’re pathogens that specialize in infecting animals but evolved to also infect human beings, at one point or another. Historically speaking, livestock is the main source of zoonoses, and the reason plagues used to ravage medieval Europe, where people and animals used to live in tight proximity with poor hygiene. Another element that makes zoonoses so dangerous is that, being a ‘new’ pathogen to humans, virtually nobody has any natural defenses against them.

SARS-CoV-2 was also a zoonosis, most likely originating from bats. The speed and ferocity with which the virus spread across the world, and the devastating effects it had on patients, are tragic reminders of just how dangerous such pathogens can become. But it’s not the only virus out there, not by far. Its big break, so to speak, what set it apart from other animal-borne viruses, was that it evolved the ability to infect a human cell — probably by accident.

MERS-CoV, a virus first seen in 2012 in Saudi Arabia, also has the potential to follow in its footsteps, according to a new study. During its initial outbreak, MERS killed around 40% of the patients it infected. However, it’s unlucky break was that it couldn’t pass from one person to another. Analyses at the time showed that virtually all cases of  infection originated from dromedaries (camels). These animals, in turn, likely got it from bats.

Despite its lethality, the MERS outbreak remained a footnote of history, as it remained quite small in scope. Testing since then also seems to indicate that the danger is passing, as around 80% of the dromedaries tested so far — 70% of which live in Africa — have antibodies against the virus in their blood.

RelatedPosts

We finally have a vaccine that works against HIV (in early tests)
Koalas in peril of extinction, due to habitat loss and an AIDS-like virus
New coating removes 99.9% of all coronavirus on it in an hour — may soon find its ways to public spaces
Physics sheds light on the 20-second handwashing rule. Here’s why it’s so effective

But, in a bid to find out why this virus didn’t infect many more people — especially curious considering how many dromedaries there are around, and how often people in Africa and Saudi Arabia interact with them — an international team of researchers took samples of the virus from multiple sites across the Middle East and Africa. Their goal was to identify and isolate individual strains (‘variants’) of the virus.

Those from Africa and the Middle East were separated into different clades, and were then compared from a genetic standpoint, and under lab conditions, using cultures of human lung cells. To their surprise, they found that African clades wouldn’t readily infect human cells. Those in the Arabian clade, however, would.

It all comes down to differences in the amino acids each clade uses in a particular protein — the S, or ‘spike’ protein. The team showed that African clade variants engineered to have the same amino acids in this protein as the Arabian clade had a much easier time infecting human cells.

One possible explanation for the difference between these two clades is that dromedary trade is “virtually one-way”, from Africa to the Middle East. In essence, this means that changes in the Arabian clade can’t percolate back into the African one, even if African clades do come into contact with Arabian ones. If the trade was to be reversed, however, or if a carrier animal makes its way back to Africa, the local population of viruses could become highly infectious to humans, sparking a new and deadly pandemic.

The paper “Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential” has been published in the journal Proceedings of the National Academy of Sciences.

Tags: dromedaryMerspandemicvirus

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

Bird Flu Is Killing Cats and Is on a Dangerous Path Toward Humans

byTudor Tarita
3 weeks ago
Biology

Scientists Uncover Bizarre Virus-Like Structures in the Human Body and We Have No Idea What They Are

byMihai Andrei
3 months ago
Health

America’s Flu Crisis Is a Public Health Disaster in the Making

byMihai Andrei
4 months ago
Diseases

FLiRT and FLuQE, the new COVID variants making the rounds

byMihai Andrei
11 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.