ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Shark embryos stay still to avoid predators

Mihai AndreibyMihai Andrei
January 10, 2013
in Animals, Biology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Some deep-water sharks can float up, contrary to conventional wisdom
Scientists describe new pocket shark species that glows in the dark
Hope delayed from sharks in the Atlantic
Paleontologists discovered a new species of ancient shark — and it was so, so tiny

Sharks are the ultimate predators, comfortably sitting at the very top of the food chain; but even they have their enemies (the biggest one being us, of course), especially when they’re small – nobody fears a small shark. But even in their defenseless period, sharks have managed to find a way to adapt.

Australian researchers found that the embryos know when a predator is coming by detecting its electric field, despite being confined in the small case. Sharks use jelly-filled pores on their heads called electroreceptors to recognise other animals, and especially other predators.

“Embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response,” explained Ryan Kempster, a shark biologist and member of the research team.

The embryos (of some sharks) are encased in a leathery egg shell, developing independently from their mothers, something which renders them vulnerable to several species. When the embryo starts to grow, the egg starts to open, marking the moment when outside predators can detect the embryos movement. Scientists were expecting to find some sort of adaptation to this problem, but they were surprised to see just how efficient the method really is.

shark embryo

“Despite being confined to a very small space within an egg case where they are vulnerable to predators, embryonic sharks are able to recognise dangerous stimuli and react with an innate avoidance response,” says Kempster. “Knowledge of such behaviours may help us to develop effective shark repellents.”

The study was conducted on bamboo sharks, a species that grows up to 1.2m in length, most often found in the western Pacific or in the Australia-New Guinea region. The thing is, this kind of study could be very useful for humans in developing shark repellants, and also for saving sharks from being killed as by-catch in fishing nets.

Via University of Western Australia

Tags: bioelectricityembryoshark

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Megalodon May Have Eaten Whatever It Could Find to Feed Its 100,000-Calorie-Per-Day Diet

byTibi Puiu
1 month ago
Future

This Film Shaped Like Shark Skin Makes Planes More Aerodynamic and Saves Billions in Fuel

byTudor Tarita
2 months ago
Health

The human egg locks like Fort Knox after it’s fertilized. Scientists finally find out how

byTibi Puiu
1 year ago
Animals

Electric fish sense the world through ‘auras’ of neighbors like a networked radar

byTibi Puiu
1 year ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.